硅橡胶/云母/氧化硅系热性能和陶瓷化机理
Thermal Property and Ceramic Mechanism ofSilicone/Mica/Silicone Oxide
DOI: 10.12677/MS.2014.46035, PDF, HTML,  被引量 下载: 3,279  浏览: 8,078 
作者: 张 曦, 秦 岩:武汉理工大学,材料科学与工程学院,武汉
关键词: 有机硅橡胶陶瓷化机理Silicone Rubber Ceramization Mechanism
摘要: 采用甲基乙烯基苯基硅橡胶为基体,添加成瓷填料云母粉、补强填料气相二氧化硅制备在高温下可形成自支撑陶瓷体的烧蚀材料。通过TG-DSC测试其在室温至1000℃过程中的热性能变化。并采用FTIR和XRD分析在不同温度下燃烧产物的成分组成及其变化。结果表明,当云母粉的添加量为40份时,在1000℃时残留率约为66.21%,在600℃以上成瓷填料与硅橡胶开始发生从有机相向无机相转变的陶瓷化反应,而且随着温度的升高,成瓷化程度逐渐加深。由此简述陶瓷化机理,硅橡胶分解产生的二氧化硅与云母粉发生反应,在填料边缘处形成起桥接作用的共熔混合物,冷却后形成陶瓷化产物。
Abstract: In this paper, methyl vinyl Phenyl Polysiloxane rubber (PVMQ) ablative composite filled with mica and silicone oxide was prepared. Its thermal properties were tested by TG-DSC analysis from room temperature to 1000˚C. After it was fired at different temperatures, the products were analyzed by Fourier transform infrared spectrometer and X-ray diffraction. The results showed that when the addition of mica was 40, the residual rate at 1000˚C was 66.21%. When the temperature was above 600˚C, the filler and organic silicon rubber started to transform from organic to inorganic. As temperature rose, the extent of porcelain was gradually deepened. So the ceramic mechanism of the composite could be described that the silicon oxide decomposed from silicon rubber reacted with mica. Then eutectic mixture which had a bridge effect was formed at the edge of fillers and the ceramic products were obtained when cooled down.
文章引用:张曦, 秦岩. 硅橡胶/云母/氧化硅系热性能和陶瓷化机理[J]. 材料科学, 2014, 4(6): 246-252. http://dx.doi.org/10.12677/MS.2014.46035

参考文献

[1] 贾修伟, 刘治国, 房晓敏 (2004) 溴化环氧树脂阻燃剂的热性能及其应用. 中国塑料, 12, 70-73.
[2] Yang, D., Zhang, W. and Jiang, B.Z. (2013) Ceramizatin and oxidation behaviors of silicone rubber ablative composite under oxyacetylene flame. Ceramics International, 39, 1571-1581.
[3] 梁喆, 赵源, 彭小弟 (2007) 陶瓷化耐火硅橡胶的应用进展. 有机硅材料, 4, 234-235.
[4] Mansouri, J., Wood, C.A., Roberts, K., et al. (2007) Investigation of the ceramifying process of modified silicone-si- licate compositions. Journal of Materials Science, 15, 6046-6055.
[5] 邵海彬, 张其土, 吴丽 (2011) 可陶瓷化硅橡胶的制备与性能. 南京工业大学学报(自然科学版), 1, 48-51.
[6] 魏方明, 王庭慰, 邵海彬 (2010) 硅氧烷基聚合物陶瓷化研究进展. 中国塑料, 10, 26.
[7] 周和平, 康树峰, 刘卫东 (2013) 一种陶瓷化硅橡胶热缩管及其生产方法. 中国专利: CN 103122095 A.
[8] 康树峰, 赵源, 刘卫东 (2013) 一种陶瓷化硅橡胶、制备方法及用途. 中国专利: CN 102964836 A.
[9] 周和平 (2014) 一种陶瓷化硅橡胶及其制备方法. 中国专利: CN 103554918 A.
[10] 何成龙, 何源 (2014) 一种陶瓷化硅橡胶电缆料及其制备方法. 中国专利: CN 103525092 A.
[11] Yu, L., Zhou, S.T., Zou, H.W., et al. (2013) Thermal stability and ablation properties study of aluminum silicate ceramic fiber and acicular wollastonite filled silicone rubber composite. Applied Polymer, 1, 39700.
[12] Xiong, Y.L., Fei, Q.S., et al. (2012) High strength retention and dimensional stability of sili-cone/alumina composite panel under fire. Fire and Materials, 4, 254-263.
[13] Mansouri, J., Burford, R.P. and Cheng, Y.B. (2006) Pyrolysis behaviour of silicone-based ceramifying composites. Materials Science and Engineering A, 1, 7-14.
[14] Chua, T.P., Mariatti, M., Azizan, A., et al. (2010) Effect of surface-functionalized multi-walled carbon na-notubes on the properties of poly(dimethyl siloxane) nanocomposites. Composites Science and Technology, 70, 671-677.
[15] Osman, M., Atallah, A., Muller, M., et al. (2001) Reinforcement of poly(dimethylsiloxane) networks by mica. Polymer, 15, 6545-6556.