变化环境下流域水文模型参数区域化研究现状评述
Review of Regionalized Parameters for Watershed Hydrological Models under Changing Environment
DOI: 10.12677/JWRR.2014.36069, PDF, HTML, 下载: 3,331  浏览: 18,409  国家自然科学基金支持
作者: 李 帅, 熊立华:武汉大学水资源与水电工程科学国家重点实验室,武汉
关键词: 参数区域化流域水文模型变化环境Regionalized Parameters Watershed Hydrological Model Changing Environment
摘要: 变化环境下的流域水文情势发生了较为显著的改变,水文模型采用历史径流资料进行参数率定已然不太合适。因此,建立流域属性与水文模型参数之间的回归关系就成了参数有效估计的可行途径。本文在分析变化环境下流域水文响应的基础上,对现有流域水文模型参数区域化过程进行归纳,分别从流域物理属性选取、水文模型结构分析、回归模型结构及其参数识别和不确定性分析四个方面对国内外流域水文模型参数区域化的相关研究现状进行总结分析,最后,对流域水文模型参数区域化过程中存在的问题进行讨论。
Abstract: Since the watershed hydrological regimes under changing environment have been altered signifi-cantly, it is not suitable to calibrate the parameters of hydrological models using historical streamflow records. Therefore, it is practicable to establish the empirical relationships between basin characteristics and model parameters for effective parameter estimation. Based on the analysis of watershed hydrological responses under changing environment, this paper gives the basic outline of currently existing regionalized procedure of model parameters, and then summa-rizes its research status at home and abroad from four aspects respectively: selection of catchment properties, analysis of hydrological model, identification of the regional model structure and its parameters, and uncertainty analysis in the above regionalized procedures. Finally, the issues for regionalized parameters of watershed hydrological models are addressed.
文章引用:李帅, 熊立华. 变化环境下流域水文模型参数区域化研究现状评述[J]. 水资源研究, 2014, 3(6): 564-575. http://dx.doi.org/10.12677/JWRR.2014.36069

参考文献

[1] 杨大文, 雷慧闽, 丛振涛. 流域水文过程与植被相互作用研究现状评述[J]. 水利学报, 2010, 41(10): 1142-1149. YANG Dawen, LEI Huimin and CONG Zhentao. Overview of the research status in interaction between hydrological processes and vegetation in catchment. Journal of Hydraulic Engineering, 2010, 41(10): 1142-1149. (in Chi-nese)
[2] KIM, U., KALUARACHCHI, J. J. Application of parameter estimation and regionalization methodologies to ungauged basins of the Upper Blue Nile River Basin, Ethiopia. Journal of Hydrology, 2008, 362(1-2): 39-56.
[3] 李红霞, 张新华, 张永强, 黎小东, 敖天其. 缺资料流域水文模型参数区域化研究进展[J]. 水文, 2011, 31(3): 13-17. LI Hongxia, ZHANG Xinhua, ZHANG Yongqiang, LI Xiaodong and AO Tianqi. Review of hydrological model pa-rameter regionalization for ungauged catchments. Journal of China Hydrology, 2011, 31(3): 13-17. (in Chi-nese)
[4] WAGENER, T. Can we model the hydrological impacts of environmental change? Hydrological Processes, 2007, 21(23): 3233-3236.
[5] MILLY, P. C. D., BETANCOURT, J., FALKENMARK, M., HIRSCH, R. M., KUNDZEWICZ, Z. W., LETTENMAIER, D. P. and STOUFFER, R. J. Stationarity is dead: Whither water management. Science, 2008, 319(5863): 573-574.
[6] 张利平, 陈小凤, 赵志鹏, 胡志芳. 气候变化对水文水资源影响的研究进展[J]. 地球科学进展, 2008, 27(3): 60-67. ZHANG Liping, CHEN Xiaofeng, ZHAO Zhipeng and HU Zhifang. Progress in study of climate change impacts on hydrology and water resources. Progress in Geography, 2008, 27(3): 60-67. (in Chinese)
[7] 董磊华, 熊立华, 于坤霞, 李帅. 气候变化与人类活动对水文影响的研究进展[J]. 水科学进展, 2012, 23(2): 286-293. DONG Leihua, XIONG Lihua, YU Kunxia and LI Shuai. Research advances in effects of climate change and human activities on hydrology. Advance in Water Science, 2011, 23(2): 286-293. (in Chinese)
[8] 宋晓猛, 张建云, 占车生, 刘春蓁. 气候变化和人类活动对水文循环影响研究进展[J]. 水利学报, 2013, 44(7): 779-790. SONG Xiaomeng, ZHANG Jianyun, ZHAN Chesheng and LIU Chunzhen. Review for impacts of climate change and human activities on water cycle. Journal of Hydraulic Engineering, 2013, 44(7): 779-790. (in Chinese)
[9] IPCC. Climate Change 2007: The physical science basis, contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007.
[10] DORE, M. H. I. Climate change and changes in global precipitation patterns: What do we know? Environmental International, 2005, 31(8): 1167-1181.
[11] GRAHAM, L. P., ANDRÉASSON, J. and CARLSSON, B. Assessing climate change impacts on hydrology from an ensemble of regional climate models, model scale and linking methods: A case study on the Lule River basin. Climatic Change, 2007, 81(1): 293-307.
[12] CHRISTENSEN, N. S., WOOD, A. W., VOISIN, N., LETTENMAIER, D. P. and PALMER, R. N. The effects of climate change on the hydrology and water resources of the Colorado River Basin. Climatic Change, 2004, 62(1-3): 337-363.
[13] REGONDA, S. K., RAJAGOPALAN, B., CLARK, M. and PITLICK, J. Seasonal cycle shifts in hydroclimatology over the western United States. Journal of Climate, 2005, 18(2): 372-384.
[14] 朴世龙, 方精云. 最近18年来中国植被覆盖的动态变化[J]. 第四纪研究, 2001, 21(4): 294-302. PIAO Shilong, FANG Jingyun. Dynamic vegetation cover change over the last 18 years in China. Quaternary Sciences, 2001, 21(4): 294-302. (in Chinese)
[15] 袁婧薇, 倪健. 中国气候变化的植物信号和生态证据[J]. 干旱区地理, 2007, 30(4): 465-473. YUAN Jingwei, NI Jian. Plant signals and ecological evidences of climate change in China. Arid Land Geography, 2007, 30(4): 465-473. (in Chinese)
[16] SHI, Y., SHEN, Y., KANG, E., LI, D. L., DING, Y. J., ZHANG, G. W. and HU, R. J. Recent and future climate change in northwest China. Climatic Change, 2007, 80(3-4): 379-393.
[17] 徐兴奎, 陈红, LEVY, J. K. 气候变暖背景下青藏高原植被覆盖特征的时空变化及其成因分析[J]. 科学通报, 2008, 53(4): 456-462. XU Xingkui, CHEN Hong and LEVY, J. K. Spatiotemporal vegetation cover variations in the Qinghai-Tibet Plateau under global climate change. Chinese Science Bulletin, 2008, 53(4): 456-462. (in Chinese)
[18] YU, L., CAO, M. and LI, K. Climate-induced changes in the vegetation pattern of China in the 21st century. Ecological Research, 2006, 21(6): 912-919.
[19] POFF, N. L., WARD, J. V. Implications of streamflow variability and predictability for lotic community structure: A regional analysis of streamflow patterns. Canadian Journal of Fisheries and Aquatic Sciences, 1989, 46(10): 1805-1818.
[20] POFF, N. L., ALLAN, J. D., BAIN, M. B., KARR, J. R., PRESTEGAARD, K. L., RICHTER, B. D., SPARKS, R. E. and STROMBERG, J. C. The natural flow regime, a paradigm for river conservation and restoration. Bioscience, 1997, 47(11): 769-784.
[21] BOSCH, D. D., SULLIVAN, D. G. and Sheridan, J. M. Hydrologic impacts of land-use changes in coastal plain watersheds. Transactions of the ASABE, 2006, 49(2): 423-432.
[22] 李丽娟, 姜德娟, 李九一, 粱丽乔, 张丽. 土地利用/覆被变化的水文效应研究进展[J]. 自然资源学报, 2007, 22(2): 211-224. LI Lijuan, JIANG Dejuan, LI Jiuyi, LIANG Liqiao and ZHANG Li. Advances in hydrological response to land use/land cover change. Journal of Nature Resources, 2007, 22(2): 211-224. (in Chinese)
[23] 张磊, 董立新, 吴炳方, 周万村. 三峡水库建设前后库区10年土地覆盖变化[J]. 长江流域资源与环境, 2007, 16(1): 107-112. ZHANG Lei, DONG Lixin, WU Bingfang and ZHOU Wancun. Land cover change and after the construction of Three Gorges Reservoir within 10 years. Resources and Environment in the Yangtze Basin, 2007, 16(1): 107-112. (in Chi-nese)
[24] KONRAD, C. P., BOOTH, D. B. and BURGES, S. J. Effects of urban development in the Puget Lowland, Washington, on interannual streamflow patterns: Consequences for channel form and streambed disturbance. Water Resources Research, 2005, 41(7): W07009.
[25] 史晓亮, 李颖, 严登华, 赵凯. 流域土地利用/覆被变化对水文过程的影响研究进展[J]. 水土保持研究, 2013, 20(4): 301-308. SHI Xiaoliang, LI Ying, YAN Denghua and ZHAO Kai. Advances in the impacts of watershed land use/cover change on hydrological processes. Research of Soil and Water Conservation, 2013, 20(4): 301-308. (in Chi-nese)
[26] BOURAOUI, F., VACHAUD, G. and CHEN, T. Prediction of the effect of climatic changes and land use management on water resources. Physics and Chemistry of the Earth, 1998, 23(4): 379-384.
[27] SIRIWARDENA, L., FINLAYSON, B. L. and MCMAHON, T. A. The impact of land use change on catchment hydrology in large catch-ments: The Comet River, Central Queensland, Australia. Journal of Hydrology, 2006, 326(1-4): 199-214.
[28] ZHANG, Y., SCHILLING, K. Increasing streamflow and baseflow in Mississippi River since the 1940s: Effect of land use change. Journal of Hydrology, 2006, 324(1-4): 412-422.
[29] WANG, S., KANG, S., ZHANG, L. and LI, F. S. Modeling hydrological response to different land-use and climate change scenarios in the Zamu River basin of northwest China. Hydrological Processes, 2008, 22(14): 2502-2510.
[30] 张建军, 纳磊, 董煌标, 王鹏. 黄土高原不同植被覆盖对流域水文的影响[J]. 生态学报, 2008, 28(8): 3597-3605. ZHANG Jianjun, NA Lei, DONG Huangbiao and WANG Peng. Hydrological response to changes in vegetation covers of small watersheds on the Loess Plateau. Acta Ecologica Sinica, 2008, 28(8): 3597-3605. (in Chinese)
[31] 田迪, 李叙勇, WELLER, D. E. 河流流量对流域下垫面特性的响应[J]. 生态学报, 2012, 32(1): 27-37. TIAN Di, LI Xuyong and WELLER, D. E. The responses of hydrological indicators to watershed characteristics. Acta Ecologica Sinica, 2012, 32(1): 27-37. (in Chinese)
[32] WANG, G., ZHANG, Y., LIU, G. and CHEN, L. Impact of land-use change on hydrological processes in the Maying River basin, China. Science in China Series D: Earth Sciences, 2006, 49(10): 1098-1110.
[33] SIVAPALAN, M., TAKEUCHI, K., FRANKS, S. W., GUPTA, V. K., KARAMBIRI, H., LAKSHMI, V., LIANG, X., MCDONNELL, J. J., MENDIONDO, E. M., O’CONNELL, P. E., OKI, T., POMEROY, J. W., SCHERTZER, D., UHLENBROOK, S. and ZEHE, E. IAHS decade on predictions in ungauged basins (PUB), 2003-2012: Shaping an exciting future for the hydrological sciences. Hydrological Sciences Journal, 2003, 48(6): 857-880.
[34] WAGENER, T., WHEATER, H. S. and GUPTA, H. V. Rainfall-runoff modelling in gauged and ungauged catchments. London: Imperial College Press, 2004.
[35] BULYGINA, N., MCINTYRE, N. and WHEATER, H. Conditioning rainfall-runoff model parameters for ungauged catchments and land management impacts analysis. Hydrology and Earth System Sciences, 2009, 13: 893-904.
[36] LI, H., ZHANG, Y., CHIEW, F. H. S. and XU, S. G. Predicting runoff in ungauged catchments by using Xinanjiang model with MODIS leaf area index. Journal of Hydrology, 2009, 370(1-4): 155-162.
[37] YE, S., LI, H. Y., HUANG, M., ALI, M., LENG, G. Y., LEUNG, L. R., WANG, S. W. and SIVAPALAN, M. Regionalization of subsurface stormflow parameters of hydrologic models: Derivation from regional analysis of streamflow recession curves. Journal of Hydrology, 2014, 519: 670-682.
[38] ALI, M., YE, S., LI, H. Y., HUANG, M. Y., LEUNG, L. R., FIORI, A. and SIVAPALAN, M. Regionalization of subsurface stormflow parameters of hydrologic models: Up-scaling from physically based numerical simulations at hillslope scale. Journal of Hydrology, 2014, 519: 683-698.
[39] YADAV, M., WAGENER, T. and GUPTA, H. Regionalization of constraints on expected watershed response behavior for improved predictions in ungauged basins. Advances in Water Resources, 2007, 30(8): 1756-1774.
[40] SCS. National engineering handbook. Section 4, hydrology. Washington DC: Soil Conservation Service, US Department of Agriculture, 1956.
[41] 刘家福, 蒋卫国, 占文凤, 周纪. SCS模型及其研究进展[J]. 水土保持研究, 2010, 17(2): 120-124. LIU Jiafu, JIANG Weiguo, ZHAN Wenfeng and ZHOU Ji. Processes of SCS model for hydrology simulation: A re-view. Research of Soil and Water Conservation, 2010, 17(2): 120-124. (in Chinese)
[42] JARBOE, J. E., HAAN, C. T. Calibrating a water yield model for small ungauged watersheds. Water Resources Research, 1974, 10(2): 256-262.
[43] MAGETTE, W. L., SHANHOLTZ, V. O. and CARR, J. C. Estimating selected parameters for the Kentucky watershed model from watershed characteristics. Water Resources Research, 1976, 12(3): 472-476.
[44] LALL, U., OLDS, J. A parameter estimation model for ungauged streamflows. Journal of Hydrology, 1987, 92(3-4): 245-262.
[45] HUGHES, D. A. Estimation of the parameters of an isolated event conceptual model from physical catchment characteristics. Hydrological Sciences Journal, 1989, 34(5): 539-557.
[46] WEEKS, W. D., ASHKANASY, N. M. Regional parameters for the Sacramento Model: A case study. Hydrology and Water Resources Symposium, Preprints of Papers. Barton: Institution of Engineers, 1983: 183-188.
[47] JAMES, L. D. Hydrologic modeling, parameter estimation and watershed characteristics. Journal of Hydrology, 1972, 17(4): 283-307.
[48] 王国庆, 张建云, 贺瑞敏. 环境变化对黄河中游汾河径流情势的影响研究[J]. 水科学进展, 2006, 17(6): 853-858. WANG Guoqing, ZHANG Jianyun and HE Ruimin. Impacts of environmental change on runoff in Fenhe river basin of the middle Yellow River basin. Advances in Water Science, 2006, 17(6): 853-858. (in Chinese)
[49] YANG, D., SUN, F., LIU, Z., CONG, Z., NI, G. H. and LEI, Z. D. Analyzing spatial and temporal variability of annual water-energy balance in nonhumid regions of China using the Budyko hypothesis. Water Resources Research, 2007, 43(4): W04426.
[50] YANG, D., SHAO, W., YEH, P. J. F., YANG, H. B., KANAE, S. and OKI, T. Impact of vegetation coverage on regional water balance in the nonhumid regions of China. Water Resources Research, 2009, 45(7): W00A14.
[51] BOUGHTON, W., CHIEW, F. Estimating runoff in ungauged catchments from rainfall, PET and the AWBM model. Environmental Modelling & Software, 2007, 22(4): 476-487.
[52] LEE, H., MCINTYRE, N., WHEATER, H. and YOUNG, A. Selection of conceptual models for regionalisation of the rainfall-runoff relationship. Journal of Hydrology, 2005, 312(1-4): 125-147.
[53] HEUVELMANS, G., MUYS, B. and FEYEN, J. Regionalisa-tion of the parameters of a hydrological model: Comparison of linear regression models with artificial neural nets. Journal of Hydrology, 2006, 319(1-4): 245-265.
[54] AO, T., ISHIDAIRAA, H., TAKEUCHI, K., KIEM, A. S., YOSHITARI, J., FUKAMI, K. and MAGOME, J. Relating BTOPMC model parameters to physical features of MOPEX basins. Journal of Hydrology, 2006, 320(1-2): 84-102.
[55] DUAN, Q., SCHAAKE, J., ANDREASSIAN, V., FRANKS, S., GOTETI, G., GUPTA, H. V., et al. Model Parameter Estimation Experiment (MOPEX): An overview of science strategy and major results from the second and third workshops. Journal of Hydrology, 2006, 320(1-2): 3-17.
[56] 李帅, 熊立华, 万民. 月水量平衡模型的比较研究[J]. 水文, 2011, 31(5): 35-41. LI Shuai, XIONG Lihua and WAN Min. Comparison of monthly water balance models. Journal of China Hydrology, 2011, 31(5): 35-41. (in Chinese)
[57] BOYLE, D. P., GUPTA, H. V., SOROOSHIAN, S., et al. Toward improved streamflow forecasts: Value of semidistributed modeling. Water Resources Research, 2001, 37(11): 2749-2759.
[58] CARPENTER, T. M., GEORGAKAKOS, K. P. Intercomparison of lumped versus distributed hy-drologic model ensemble simulations on operational forecast scales. Journal of Hydrology, 2006, 329(1-2): 174-185.
[59] DAS, T., BARDOSSY, A., ZEHE, E. and HE, Y. Comparison of conceptual model performance using different representations of spatial variability. Journal of Hydrology, 2008, 356(1-2): 106-118.
[60] AJAMI, N. K., GUPTA, H., WAGENER, T. and SOROOSHIAN, S. Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system. Journal of Hydrology, 2004, 298(1-4): 112-135.
[61] ANDREASSIAN, V., ODDOS, A., MICHEL, C., ANCTIL, F., PERRIN, C. and LOUMAGNE, C. Impact of spatial aggregation of inputs and parameters on the efficiency of rainfall-runoff models: A theoretical study using chimera watersheds. Water Resources Research, 2004, 40(5): W05209.
[62] REED, S., KOREN, V., SMITH, M., ZHANG, Z. Y., MOREDA, F., SEO, D. J. and DMIP Participants. Overall distributed model intercomparison project results. Journal of Hydrology, 2004, 298(1-4): 27-60.
[63] KLING, H., GUPTA, H. On the development of regionalization relationships for lumped watershed models: The impact of ignoring sub-basin scale variability. Journal of Hydrology, 2009, 373(3-4): 337-351.
[64] BRAUN, L. N., RENNER, C. B. Application of a conceptual runoff model in different physiographic regions of Switzerland. Hydrological Sciences Journal, 1992, 37(3): 217-231.
[65] 柴晓玲, 郭生练, 彭定志, 张洪刚. IHACRES模型在无资料地区径流模拟中的应用研究[J]. 水文, 2006, 26(2): 30-33. CHAI Xiaoling, GUO Shenglian, PENG Dingzhi and ZHANG Honggang. A study on the application of IHACRES in runoff simulation in ungauged basins. Journal of China Hydrology, 2006, 26(2): 30-33. (in Chinese)
[66] KAY, A. L., JONES, D. A., CROOKS, S. M., CALVER, A. and REYNARD, N. S. A comparison of three approaches to spatial generalization of rainfall-runoff models. Hydrological Processes, 2006, 20(18): 3953-3973.
[67] XU, C. Estimation of parameters of a conceptual water balance model for ungauged catchments. Water Resources Management, 1999, 13(5): 353-368.
[68] KOKKONE, T., JAKEMAN, A., YOUNG, P. and KOIVUSALO, H. J. Predicting daily flows in un-gauged catchments: Model regionalization from catchment descriptors at the Coweeta Hydrologic Laboratory, North Carolina. Hydrological Processes, 2003, 17(11): 2219-2238.
[69] JIN, X., XU, C., ZHANG, Q. and CHEN, Y. Re-gionalization study of a conceptual hydrological model in Dongjiang basin, south China. Quaternary International, 2009, 208(1-2): 129-137.
[70] WAYLEN, P. R., WOO, M. Regionalization and prediction of floods in the Fraser river catchment, British Columbia. Water Resources Bulletin, 1984, 20(6): 941-949.
[71] MIMIKOU, M., GORDIOS, J. Predicting the mean annual flood and flood quantiles for ungauged catchments in Greece. Hydrological Sciences Journal, 1989, 34(2): 169-184.
[72] REIMERS, W. Estimating hydrological parameters from basin characteristics for large semiarid catchments. Regionalisation in hydrology. Proceedings of the Ljubljana Symposium, 1990, IAHS Publ. No.191: 187-194.
[73] SERVAT, E., DEZETTER, A. Rainfall-runoff modelling and water resources assessment in northwestern Ivory Coast. Tentative extension to ungauged catchments. Journal of Hydrology, 1993, 148(1-4): 231-248.
[74] POST, D. A., JAKEMAN, A. J. Relationships between catchment attributes and hydrological response characteristics in small Australian mountain ash catchments. Hydrological Processes, 1996, 10(6): 877-892.
[75] ABDULLA, F. A., LETTENMAIER, D. P. Development of regional parameter estimation equations for a macroscale hydrologic model. Journal of Hydrology, 1997, 197(1-4): 230-257.
[76] SEFTON, C. E. M., HOWARTH, S. M. Relationships between dynamic response characteristics and physical descriptors of catchments in England and Wales. Journal of Hydrology, 1998, 211(1-4): 1-16.
[77] SEIBERT, J. Regionalization of parameters for a conceptual rainfall-runoff model. Agricultural and Forest Meteorology, 1999, 98-99(1): 279-293.
[78] YOKOO, Y., KAZAMA, S., SAWAMOTO, M. and NISHIMURA, H. Regionalization of lumped water balance model parameters based on multiple regression. Journal of Hydrology, 2001, 246(1-4): 209-222.
[79] 井立阳, 张行南, 王俊, 程海云. GIS在三峡流域水文模拟中的应用[J]. 水利学报, 2004, 4: 15-20. JING Liyang, ZHANG Xingnan, WANG Jun and CHENG Haiyun. Application of GIS in simulation of river basin hy-drology in Three Gorges project reservoir. Journal of Hydraulic Engineering, 2004, 4: 15-20. (in Chi-nese)
[80] FERNANDEZ, W., VOGEL, R. M. and SANKARASUBRAMANIAN, A. Regional calibration of a wa-tershed model. Hydrological Sciences Journal, 2000, 45(5): 689-707.
[81] LAMB, R., CREWETT, J. and CALVER, A. Relating hydrological model parameters and catchment properties to estimate flood frequencies from simulated river flows. BHS 7th National Hydrology Symposium Newcastle-upon-Tyne, 2000, 3.57-3.64.
[82] KAY, A. L., JONES, D. A., CROOKS, S. M., KJELDSEN, T. R. and FUNG, C. F. An investigation of site-similarity approaches to generalization of a rainfall-runoff model. Hydrology and Earth System Science, 2007, 11(1): 500-515.
[83] WAGENER, T., WHEATER, H. S. Parameter estimation and regionalization for continuous rainfall-runoff models including uncertainty. Journal of Hydrology, 2006, 320(1-2): 132-154.
[84] BURN, D. H., BOORMAN, D. B. Estimation of hydrological parameters at ungauged catchments. Journal of Hydrology, 1993, 143(3-4): 429-454.
[85] GUO, S., WANG, J., XIONG, L., YING, A. W. and LI, D. F. A macro-scale and semi-distributed monthly water balance model to predict climate change impacts in China. Journal of Hydrology, 2002, 268(1-4): 1-15.
[86] VANDEWIELE, G. L., ELIAS, A. Monthly water balance of ungauged catchments obtained by geographical regionalization. Journal of Hydrology, 1995, 170(1-4): 277-291.
[87] YOUNG, A. R. Stream flow simulation within UK ungauged catchments using a daily rainfall-runoff model. Journal of Hydrology, 2006, 320(1-2): 155-172.
[88] MCINTYRE, N., LEE, H., WHEATER, H., YOUNG, A. and WAGENER, T. Ensemble predictions of runoff in ungauged catchments. Water Resources Research, 2005, 41(12): W12434.
[89] YU, P., YANG, T. Using synthetic flow duration curves for rainfall-runoff model calibration at ungauged sites. Hydrological Processes, 2000, 14(1): 117-133.
[90] 黄国如. 利用区域流量历时曲线模拟东江流域无资料地区的日径流过程[J]. 水力发电学报, 2007, 26(4): 29-35. HUANG Guoru. Daily flow hydrograph simulation using regional flow duration curves for ungauged region of Dong-jiang basin. Journal of Hydroelectric Engineering, 2007, 26(4): 29-35. (in Chinese)
[91] 杨邦, 任立良, 陈福容, 史俊超. 无资料地区水文预报(PUB)不确定性研究[J]. 水电能源科学, 2009, 27(4): 7-10. YANG Bang, REN Liliang, CHEN Furong and SHI Junchao. Uncertainty research of hydrological prediction in un-gauged basins. International Journal Hydroelectric Energy, 2009, 27(4): 7-10. (in Chinese)
[92] MERZ, R., BLOSCHL, G. Regionalization of catchment model parameters. Journal of Hydrology, 2004, 287(1-4): 95-123.
[93] OUDIN, L., ANDRÉASSIAN, V. C., PERRIN, C., MICHEL, C. and LE MOINE, N. Spatial proximity, physical similarity, regres-sion and ungauged catchments: A comparison of regionalization approaches based on 913 French catchments. Water Resources Research, 2008, 44(3): W03413.
[94] 李红霞, 张永强, 敖天其, 张新华. 无资料地区径流预报方法比较与改进[J]. 长江科学院院报, 2010, 27(2): 11-15. LI Hongxia, ZHANG Yongqiang, AO Tianqi and ZHANG Xinhua. Comparison of regionalization approaches for ru-noff prediction in free of observational data catchments. Journal of Yangtze River Scientific Research Institute, 2010, 27(2): 11-15. (in Chinese)
[95] BEVEN, K. J., BINLEY, A. M. The future of distributed models: Model calibration and uncertainty prediction. Hydrological Processes, 1992, 6(3): 279-298.
[96] BEVEN, K. J. Rainfall-runoff modelling: The Primer. Chichester: Willey, 2001.
[97] DUAN, Q., AJAMIN, K., GAO, X. and SOROOSHIAN, S. Multi-mode ensemble hydrologic prediction using Bayesian model averaging. Advances in Water Resources, 2007, 30(5): 1371-1386.
[98] 梁忠民, 戴荣, 李彬权. 基于贝叶斯理论的水文不确定性分析研究进展[J]. 水科学进展, 2010, 21(2): 274-281. LIANG Zhongmin, DAI Rong and LI Binquan. A review of hydrological uncertainty analysis based on Bayesian theory. Advances in Water Science, 2010, 21(2): 274-281. (in Chinese)
[99] XIONG, L., WAN, M., WEI, X. and O’CONNOR, K. M. Indices for assessing the prediction bounds of hydrological models and application by generalized likelihood uncertainty estimation. Hydrological Science Journal, 2009, 54(5): 852-871.
[100] 董磊华, 熊立华, 万民. 基于贝叶斯模型加权平均方法的水文模型不确定性分析[J]. 水利学报, 2011, 42(9): 1065-1074. DONG Leihua, XIONG Lihua and WAN Min. Uncertainty analysis of hydrological modeling using the Bayesian Model Averaging Method. Journal of Hydraulic Engineering, 2011, 42(9): 1065-1074. (in Chinese)
[101] DONG, L., XIONG, L. and ZHENG, Y. Uncertainty analysis of coupling multiple hydrologic models and multiple objective functions in Han River, China. Water Science & Technology, 2013, 68(3): 506-513.
[102] DONG, L., XIONG, L. and YU, K. Uncertainty analysis of multiple hydrologic models using the Bayesian model averaging method. Journal of Applied Mathematics, 2013: 346045.
[103] BLASONE, R. S., VRUGT, J. A., MADSEN, H., ROSBJERG, D., ROBINSON, B. A. and ZYVOLOSKI, G. A. Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling. Advances in Water Resources, 2008, 31(4): 630-648.
[104] 卫晓婧, 熊立华, 万民, 刘攀. 融合马尔科夫链–蒙特卡洛算法的改进通用似然不确定性估计方法在流域水文模型中的应用[J]. 水利学报, 2009, 40(4): 464-480. WEI Xiaojing, XIONG Lihua, WAN Min and LIU Pan. Application of Markov Chain Monte Carlo method based modified generalized likelihood uncertainty estimation to hydrological models. Journal of Hydraulic Engineering, 2009, 40(4): 464-480. (in Chinese)
[105] XU, C. Testing the transferability of regression equations derived from small sub-catchments to a large area in central Sweden. Hydrology and Earth System Sciences, 2003, 7: 317-324.