地下室锚杆抗拔试验与分析
Experiment and Analysis of Anti-Floating Anchor Pullout Test of Basement
DOI: 10.12677/HJCE.2015.41005, PDF, HTML, XML, 下载: 2,727  浏览: 11,546 
作者: 孙新成:合肥铁建实业有限公司,合肥;邓会元, 戴国亮:东南大学土木工程学院,南京
关键词: 抗拔试验残余位移抗拔承载力经验方法Pullout Test The Residual Displacement Anti-Floating Capacity Experiment Method
摘要: 总结了抗拔锚杆桩承载力的经验计算方法。蚌埠市某住宅项目工程设计采用768根抗浮锚杆,锚固段长度是16 m,锚固直径为150 mm,对其中8根锚杆进行了抗拔试验。测试结果表明,加载至300 kN时,上拔位移为10.35 mm~12.69 mm,且能达到稳定状态,卸载后残余位移约为最大位移的2/3,试验锚杆抗拔承载力均满足设计要求。通过试验结果数据拟合得到Q-S曲线,预测了锚杆的抗拔极限承载力,并与不同经验方法计算结果进行了对比,结果表明不同方法计算结果与预测值略有差异,但均大于实测最大加载值300 kN。
Abstract: The experience calculation methods of the pullout capacity of anchor pile are summarized in this paper. An engineering design of 768 pieces of anti-floating anchor was adopted in Bengbu city, and all the anchoring depth is 16 m, anchorage diameter is 150 mm. 8 pieces of anchor were selected to perform the pull-out tests. The test results show that, the range of uplift displacement is from 10.35 mm to 12.69 mm when the load reaches up to 300 kN, and it can reach a stable state. The residual displacement is about 2/3 of the maximum displacement after unloading, and all the anchors meet the design requirements of uplift bearing capacity test. The Q-S fitting curve is obtained by approximate prediction of bearing capacity of anchor pullout from the test results. Meanwhile, the results were compared with different calculation methods, and it shows that there is a slight difference between different calculation methods and predictive value. Nevertheless, they are all larger than the measured maximum load value 300 kN.
文章引用:孙新成, 邓会元, 戴国亮. 地下室锚杆抗拔试验与分析[J]. 土木工程, 2015, 4(1): 37-48. http://dx.doi.org/10.12677/HJCE.2015.41005

参考文献

[1] 王胜 (2001) 预应力钢绞线锚杆在地下停车场工程抗浮中的应用与研究. 建筑结构, 8, 60-62.
[2] 彭涛, 武威 (2000) 复杂地质条件下预应力抗浮锚杆的应用. 工程勘察, 2, 31-33.
[3] 崔京浩, 崔岩 (2000) 锚固抗浮问题的几个关键问题. 特种结构, 1, 9-17.
[4] 林国卫, 张一志, 岑仰润 (2005) 杭州粉砂土地区某工程抗浮锚杆抗拔试验分析. 城市勘察, 5.
[5] Lutz, L. and Gergeley, M. (1967) Mechanics of band and slip of deformed bars in concrete. Journal of American Concrete Institute, 64, 711-721.
[6] Evangelista, A. and Sapio, G. (1977) Behaviour of ground anchors in stiff clays. Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering, The Japanese Society of Soil Mechanics and Foundation Engineering, Tokyo, 39-47.
[7] Phillps, S.H.E. (1970) Factors affecting the design of anchorages in rock. Cementation Resear Ltd., London.
[8] Fujita, K., et al. (1977) A method to predict the load-displacement relationship of ground anchors. Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering, The Japanese Society of Soil Mechanics and Foundation Engineering, Tokyo, 58-62.
[9] 尤春安 (2004) 锚固系统应力传递机理理论及应用研究. 博士学位论文, 山东科技大学, 青岛.
[10] 程良奎, 胡建林 (1996) 土层锚杆的几个力学问题. In: 中国岩土锚固工程协会主编, 岩土工程的锚固技术,人民交通出版社, 北京.
[11] 王贤能, 周逢君, 徐金台, 等 (2002) 深圳地区抗浮锚杆应用现状及分析. 岩土锚固技术与西部开发.
[12] 贾金青, 宋二翔 (2002) 滨海大型地下工程抗浮锚杆的设计与试验研究. 岩土工程学报, 6, 769-771.
[13] 陈棠茵, 王贤能 (2006) 抗浮锚杆应力应变状态的线弹性分析理论. 岩土力学, 11, 2033-2036.
[14] 中华人民共和国建设部 (2011) 建筑地基基础设计规范(GB50007-2011). 中国建筑工业出版社, 北京.
[15] Phillps, S.H.E. (1970) Factors affecting the design of anchorages in rock. Cementation Research Ltd., London.
[16] 张强勇 (2005) 岩土工程强度与稳定计算及工程应用. 中国建筑工业出版社, 北京.
[17] 朱焕春, 荣冠, 肖明 (2002) 张拉荷载下全长粘结锚杆工作机理试验研究. 岩石力学与工程学报, 3, 379-384.
[18] 魏新江 (2006) 全长粘结锚杆的抗拔力分析. 岩土工程学报, 7, 902-905.
[19] 郑全明 (2000) 拉力型土锚最优长度及最大极限承载力的确定. 西部探矿工程, 2, 27-28.
[20] 潘殿琦 (1999) 土层锚杆抗拨力的影响因素及其计算公式的修正. 地质找矿论丛, 2, 87-92.
[21] 张发明, 陈祖煜 (2001) 岩体与锚固体间粘结强度的确定. 岩土力学, 4, 470-473.
[22] 电力规划设计院 (1984) 送电线路基础设计的技术规范(SDGJ62-84).
[23] 交通部 (2007) 公路桥涵地基与基础设计规范(JTG D63-2007). 人民交通出版社, 北京.
[24] 王贤能, 曾卫东, 徐金台 (2002) 岩石抗浮锚杆的应用及分析. In: 中国岩石力学与工程学会, Ed., 中国岩石力学与工程学会第七次学术大会论文集, 中国科学技术出版社, 北京, 831-835.
[25] 陈根全 (1997) 锚杆桩的抗拔试验. 工程勘察, 2, 15-16.
[26] 贾金青, 宋二祥 (2002) 滨海大型地下工程抗浮锚杆的设计与试验研究. 岩土工程学报, 6, 769-771.