基于格子Boltzmann模型模拟二维肺部呼吸作用的气体流动
Two-Dimensional Simulation of Gas Flow in the Respiration of Pulmonary by Lattice Boltzmann Method
DOI: 10.12677/IJFD.2014.24006, PDF, HTML, XML, 下载: 2,547  浏览: 8,559  国家自然科学基金支持
作者: 王博宇, 闫广武, 尹显利:吉林大学数学学院,吉林 长春
关键词: 格子Boltzmann方法二维肺部气道分形结构呼吸现象Lattice Boltzmann Method Two-Dimensional Pulmonary Airway Fractal Structure Respiration
摘要: 本文提出了一个模拟二维肺部气道呼吸作用的格子Boltzmann模型。为了模拟呼吸作用的动态过程,我们使用了具有分形结构的气管树型流动通道。数值结果表明,该结构具有呼吸现象。
Abstract: In this paper, we present a lattice Boltzmann model for simulating the respiration of two-dimen- sional pulmonary airway. In order to simulate the dynamic process of respiration, we use the airway model which has fractal structure of bronchial tree. Numerical results indicate that the structure has a respiration phenomenon.
文章引用:王博宇, 闫广武, 尹显利. 基于格子Boltzmann模型模拟二维肺部呼吸作用的气体流动[J]. 流体动力学, 2014, 2(4): 53-61. http://dx.doi.org/10.12677/IJFD.2014.24006

参考文献

[1] Qian, Y.H., D’humieres, D. and Lallemand, P. (1992) Lattice BGK model for Navier-Stokes equations. Europhysics Letters, 17, 479-484.
[2] Benzi, R., Succi, S. and Vergassola, M. (1992) The lattice Boltzmann equations: Theory and applications. Physics Reports, 222, 145-197.
[3] Chen, S.Y. and Doolen, G.D. (1998) Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics, 30, 329-364.
[4] Succi, S. (2001) The Lattice Boltzmann equation for fluid dynamics and beyond. Oxford University Press, New York.
[5] Wang, M.R. and Kang, Q.J. (2010) Modeling electrokinetic flows in microchannels using coupled lattice Boltzmann methods. Journal of Computational Physics, 229, 728-744.
[6] Yoshino M., Hotta Y., Hirozane, T. and Endo, M. (2007) A numerical method for incompressible non-Newtonian fluid flows based on the lattice Boltzmann method. Journal of Non-Newtonian Fluid Mechanics, 147, 69-78.
[7] Yuan, H.Z., Niu, X.D., Shu, S., Li, M.J. and Yamaguchi, H. (2014) A momentum exchange-based immersed boundary- lattice Boltzmann method for simulating a flexible filament in an incompressible flow. Computers & Mathematics with Applications, 67, 1039-1056.
[8] Yuan, H.Z., Shu, S., Niu, X.D., Li, M.J. and Hu, Y. (2014) A numerical study of jet propulsion of an oblate jellyfish using a momentum exchange-based immersed boundary-lattice Boltzmann method. The Advances in Applied Mathe- matics and Mechanics, 6, 307-326.
[9] Mandelbrot, B. (1982) Fractals and geometry of nature. Freeman, New York.
[10] Matamis, D., Lemaire, F., Harf, A., Burn-Buisson, C., Ansquer, J.C. and Atlan, G. (1984) Total respiratory pressure- volume curves in the adult respiratory distress syndrome. Chest, 86, 58-66.
[11] Kárason, S., Søndergaard, S., Lundin, S., Wiklund, J. and Stenqvist, O. (2000) Evaluation of pressure/volume loops based on intratracheal pressure measurements during dynamic conditions. Acta Anaesthesiologica Scandinavica, 44, 571-577.
[12] Libosa, C., Wood, L.D.H., Jardim, J. and Macklem, P.T. (1980) Relation between flow, curvilinearity, and density dependence of pulmonary pressure-flow curves. Journal of Applied Physiology, 48, 878-885.
[13] Greville, H.W., Aronup, M.E. and Mink, S.N. (1987) Density dependence of maximal flow is lung volume dependent during bronchoconstriction. Journal of Applied Physiology, 62, 691.
[14] Nahum, A., Sznajder, J.I., Solway, J., Wood, L.D.H. and Schumacker, P.T. (1988) Pressure, flow, and density relation- ships in airway models during constant-flow ventilation. Journal of Applied Physiology, 64, 2066-2073.
[15] Guo, Z., Zheng, C.G. and Shi, B.C. (2002) Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method. Chinese Physics, 11, 366.
[16] Johnson, A.T. (1991) Biomechanics and Exercise Physiology. CRC Press Inc., Boca Raton.