低温两相流垂直管内间歇泉现象的数值模拟研究
Numerical Investigation of Cryogenic Two-Phase Flow Geysering Phenomenon in Vertical Tube
DOI: 10.12677/IJFD.2014.24007, PDF, HTML, XML,  被引量 下载: 2,611  浏览: 9,726  国家自然科学基金支持
作者: 孙康杰, 王 经:上海交通大学机械与动力工程学院,上海;王淑华:中国科学院上海应用物理研究所,上海
关键词: 弹状气泡间歇泉低温CFDTaylor Bubble Geysering Cryogenic CFD
摘要: 本文通过数值模拟方法对垂直管内间歇泉现象进行了研究。研究了不同工况下垂直管内间歇泉的变化规律。结果表明,弹状气泡由垂直管内进入上部存储罐时,破碎成为为团状气泡并向上方液面移动,在移动过程中团状气泡发生破碎,在溢出液面时发生液滴溅出,且液面高度发生周期性变化。当初始弹状气泡长度过小不会引发间歇泉现象。随着弹状气泡长度增大,间歇泉的强度赠大。当垂直管内存在多个弹状气泡时,随着管内弹状气泡的增多,压力波动的频率增大,压力值整体增大。
Abstract: The geysering phenomenon at different conditions in the vertical pipe is studied by CFD simulation. The results show that the slug bubble changes into the lump bubble and moves to the top level when it moves into the pool. When the bubble overflows the top level, the liquid droplet is splashed, and the liquid level changes periodically. The length characteristics of slug bubble are performed in cryogenic vertical geysering phenomenon. The geysering cannot be occurred when the length of slug bubble is too small. With the length of slug bubble is increased, the intensity of geysers is huger. The pressure frequency and intensity are increased when the number of Taylor bubble is increased.
文章引用:孙康杰, 王淑华, 王经. 低温两相流垂直管内间歇泉现象的数值模拟研究[J]. 流体动力学, 2014, 2(4): 62-68. http://dx.doi.org/10.12677/IJFD.2014.24007

参考文献

[1] Sou, A. and Nakajima, T. (2002) Numerical analysis of geysering, Kruger park. 1st International Conference on Heat Transfer, Fluid Mechanics, and Thermodynamics, 4, 8-10.
[2] Ring, E. (1964) Rocket propellant and pressurization systems. Prentice-Hall, Englewood Cliffs, 85-101.
[3] 张亮, 林文胜, 鲁雪生等 (2002) 低温液体输送系统间歇泉现象机理分析与消除措施. 低温与超导, 2, 1-6.
[4] Murphy, D.W. (1965) An experimental investigation of gey-sering in vertical tubes. Advances in Cryogenic Engineer- ing, 10, 353-359.
[5] Kuncoro, H., Rao, Y.F. and Fukuda, K. (1995) An experimental study on the mechanism of geysering in a closed two-phase thermosyphon. International Journal of Multiphase Flow, 21, 1243-1252.
[6] Fujii, T., Fukuda, H., Kimoto, H., et al. (2003) Control of geyser phenomenon in water column by ultrasonic cavitation. 5th International Symposium on Cavitation (CAV2003), Osaka, 1-4 November 2003, 1-8.
[7] Khazaee, I., Hosseini, R. and Noie, S.H. (2010) Experimental investigation of effective parameters and correlation of geyser boiling in a two-phase closed thermosyphon. Applied Thermal Engineering, 30, 406-412.
[8] Diblasi, G.A. (1992) Operationally efficient propulsion system study (OEPSS) data book, Vol IX, NAS10-11568-(Mod.8).
[9] Diblasi, G.A. (1992) Operationally efficient propulsion system study (OEPSS) data book, Vol IX, NAS10-11568(Mod.8).
[10] Tong, L.S. 著, 王孟浩译 (1980) 沸腾传热和两相流动. 机械工业出版社, 北京.
[11] Mikic, B.B., Rohsenow, W.M. and Griffith, P. (1970) On bubble growth rates. International Journal of Heat and Mass Transfer, 13, 657-666.
[12] Brackbill, J.U., Kothe, D.B. and Zemach, C. (1992) A continuum method for modeling surface tension. Journal of Computational Physics, 100, 335-354.
[13] 王淑华 (2010) 垂直管路中低温两相流间歇泉现象及其动态特性的研究. 博士毕业论文, 上海交通大学, 上海.