赤泥土壤化处置技术研究进展
Research Advances on Soil Formation of Bauxite Residues
DOI: 10.12677/ME.2015.32003, PDF, HTML,  被引量 下载: 2,691  浏览: 8,484  国家自然科学基金支持
作者: 薛生国, 吴雪娥, 黄 玲, 黄 楠:中南大学冶金与环境学院,湖南 长沙
关键词: 赤泥氧化铝赤泥堆场土壤化Red Mud Alumina Bauxite Residues Disposal Area Soil Formation
摘要: 赤泥是氧化铝工业生产过程中产生的高碱性废弃物,综合利用难度大,全球赤泥堆存量超过30亿吨,赤泥处置已成为限制氧化铝工业发展的瓶颈问题。论文在综合国内外氧化铝行业赤泥堆存现状和综合利用技术的基础上,分析了赤泥土壤化处置过程的基质改良、耐性植物筛选、环境风险防控等研究方向存在的问题,提出了赤来赤泥土壤化处置技术研究关注的主要研究方向,这将为解决氧化铝工业生产过程赤泥的减排问题,维护金属矿冶区的生态安全提供科学依据。
Abstract: Bauxite residue mud (red mud) is an alkaline, saline-sodic byproduct of the Bayer process, in which alumina is extracted from bauxite. Global residue inventory will reach an estimated 3.0 billion tonnes in 2014. How to dispose the huge amount of bauxite residue is still a troublesome problem. Based on storage and utilization of bauxite residue, this paper discusses the problem of substrate amendment of bauxite residues, screening of tolerant plant species and microbe, and environment risk management in soil formation in bauxite residue. Further researches on soil formation of bauxite residues are proposed as well.
文章引用:薛生国, 吴雪娥, 黄玲, 黄楠. 赤泥土壤化处置技术研究进展[J]. 矿山工程, 2015, 3(2): 13-18. http://dx.doi.org/10.12677/ME.2015.32003

参考文献

[1] Power, G., Gräfe, M. and Klauber, C. (2011) Bauxite residue issues: I. Current management, disposal and storage prac-tices. Hydrometallurgy, 1, 33-45.
[2] Li, X.B., Wang, D.Q., Zhou, Q.S., Liu, G.H. and Peng, Z.H. (2012) Influence of magnetic field on seeded precipitation of gibbsite from sodium aluminate solution. Minerals Engineering, 32, 12-18.
[3] Xenidis, A., Harokopou, A.D., Mylona, E. and Brofas, G. (2005) Modifying alumina red mud to support a revegetation cover. JOM, 57, 42-46.
[4] Gherardi, M.J. and Rengel, Z. (2003) Genotypes of lucerne (Medicago sativa L.) show differential tolerance to manganese deficiency and toxicity when grown in bauxite residue sand. Plant and Soil, 2, 287-296.
[5] Courtney, R.G. and Timpson, J.P. (2005) Nutrient status of vegetation grown in alkaline bauxite processing residue amended with gypsum and thermally dried sewage sludge—A two year field study. Plant and Soil, 1, 187-194.
[6] Judy, E. and Tim, M. (2006) Effective nutrient sources for plant growth on bauxite residue: II. Evaluating the response to inorganic fertilizers. Water Air and Soil Pollution, 1, 315-331.
[7] Courtney, R. and Mullen, G. (2009) Use of germination and seedling performance bioassays for assessing revegetation strategies on bauxite residue. Water Air and Soil Pollution, 1, 15-22.
[8] Jones, B.E., Haynes, R.J. and Phillips, I.R. (2010) Effect of amendment of bauxite processing sand with organic materials on its chemical, physical and microbial properties. Journal of Environmental Management, 11, 2281-2288.
[9] Courtney, R. and Kirwan, L. (2012) Gypsum amendment of alkaline bauxite residue-plant available aluminum and implications for grassland restoration. Ecological Engineering, 42, 279-282.
[10] 吴亚君, 李小平, 冷杰彬 (2004) 平果铝业公司赤泥的土壤改良. 有色金属, 56, 131-133.
[11] 李小平 (2007) 平果铝赤泥堆场的边坡环境问题与治理对策研究. 有色金属(矿山部分), 2, 29-31.
[12] 南相莉, 张廷安, 刘燕, 豆志河, 赵秋月, 蒋孝丽 (2009) 我国主要赤泥种类及其对环境的影响. 过程工程学报, S1, 459-464.
[13] 姜丁丁, 罗海波 (2010) 赤泥改良基质上草坪草的生长特性研究. 贵州农业科学, 2, 56-58.
[14] 王国贞, 朱泮民, 段璐淳, 张乐观 (2010) 拜耳法赤泥改良及种植黑麦草的研究. 安徽农业科学, 31, 17486- 17493.
[15] Tang, S.R. and Fang, Y.H. (2001) Copper accumulation by Polygonum microcephalum D. Don and Rumex hastatus D. Don from copper mining spoils in Yunnan Province, P.R. China. Environment Geology, 40, 902-907.
[16] Conesa, H.M., Robinson, B.H., Schulin, R. and Nowack, B. (2007) Growth of Lygeum spartum in acid mine tailings: Response of plants developed from seedlings, rhizomes and at field conditions. Environmental Pollution, 145, 700- 707.
[17] Xue, S.G., Chen, Y.X., Reeves, R.D. and Baker, A.J.M. (2004) Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb (Phytolaccaceae). Environmental Pollution, 131, 393-399.
[18] Rotkittikhun, P., Chaiyarat, R. and Kruatrachue, M. (2007) Growth and lead accumulation by the grasses Vetiveria zizanioides and Thysanolaena maxima in lead-contaminated soil amended with pig manure and fertilizer: A glasshouse study. Chemosphere, 66, 45-53.
[19] Yoon, J., Cao, X., Zhou, Q. and Ma, L.Q. (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment, 368, 456-464.
[20] Remon, E., Bouchardon, J.L., Cornier, B., Guy, B., Leclerc, J.C. and Faure, O. (2005) Soil characteristics, heavy metal availability and vegetation recovery at a former metallurgical landfill: Implications in risk assessment and site restora- tion. Environmental Pollution, 137, 316-323.
[21] Simon, L. (2005) Stabilization of metals in acidic mine spoil with amendments and red fescue (Festuca rubra L.) growth. Environmental Geochemistry and Health, 27, 289-300.
[22] Chen, Q. and Wong, J.W.C. (2006) Growth of Agropyron elongatum in a simulated nickel contaminated soil with lime stabilization. Science of the Total Environment, 366, 448-455.
[23] Chiu, K.K., Ye, Z.H. and Wong, M.H. (2006) Growth of Vetiveria zizanioides and Phrangmities australis on Pb/Zn and Cu mine tailings amended with manure compost and sewage sludge: A greenhouse study. Bioresource Technology, 97, 158-170.
[24] Kumpiene, J., Lagerkvist, A. and Maurice, C. (2007) Stabilization of Pb-and Cu-contaminated soil using coal fly ash and peat. Environmental Pollution, 145, 365-373.
[25] Ruttens, A., Colpaert, J.V. and Mench, M. (2006) Phytostabilization of a metal contaminated sandy soil: II influence of compost and or inorganic metal immobilizing soil amendments on metal leaching. Environmental Pollution, 144, 533- 539.