AMMECR1的研究进展
Research Advances of AMMECR1
DOI: 10.12677/BIPHY.2015.31001, PDF, HTML, XML,  被引量 下载: 2,819  浏览: 12,474  国家自然科学基金支持
作者: 周化民, 蔡成峰, 徐 盟, 李 光:厦门大学生命科学学院,细胞应急生物学国家重点实验室,福建 厦门
关键词: AMMECR1磷酸化相关蛋白miRNAAMMECR1 Phosphorylation Related Proteins miRNA
摘要: AMMECR1是X-连锁邻近基因缺陷综合症AMME关键区域基因之一。它是一个非常古老而且保守的基因,从古细菌,细菌,酵母、线虫、果蝇到哺乳类和人,这一蛋白都有很高的同源性,应该在基本的生物学过程中执行某个重要的功能。但AMMECR1的生物学功能研究还很匮乏。本文从AMMECR1的表达、同源蛋白的晶体结构、磷酸化、功能相关蛋白、靶向AMMECR1的miRNA、AMMECR1可能的相互作用蛋白等方面进行综述,为开展AMMECR1研究的提供参考。
Abstract: AMMECR1 (Alport syndrome, mental retardation, midface hypoplasia, and elliptocytosis chromo-somal region gene 1) is a gene from the novel X-linked contiguous gene deletion syndrome AMME critical region. It encodes a transcript that is conserved throughout the course of evolution. There is a considerable degree of homology between the AMMECR1 proteins from different species ranging from bacteria and archaea to eukaryotes. This conservation suggests that AMMECR1 and its homologue proteins may exert essential functions in a variety of organisms. In this review, we will describe that AMMECR1 expression, crystal structure, phosphorylation, function-related proteins, miRNAs targeting to AMMECR1 and its interaction partner to promote the study of AMMECR1.
文章引用:周化民, 蔡成峰, 徐盟, 李光. AMMECR1的研究进展[J]. 生物物理学, 2015, 3(1): 1-6. http://dx.doi.org/10.12677/BIPHY.2015.31001

参考文献

[1] Vitelli, F., Piccini, M., Caroli, F., et al. (1999) Identification and characterization of a highly conserved protein absent in the Alport syndrome (A), mental retardation (M), midface hypoplasia (M), and elliptocytosis (E) contiguous gene deletion syndrome (AMME). Genomics, 55, 335-340.
[2] Gazou, A., Riess, A., Grasshoff, U., et al. (2013) Xq22.3-q23 deletion including ACSL4 in a patient with intellectual disability. American Journal of Medical Genetics Part A, 161A, 860-864.
[3] Stastna, M., Behrens, A., McDonnell, P.J., et al. (2011) Analysis of protein composition of rabbit aqueous humor following two different cataract surgery incision procedures using 2-DE and LC-MS/MS. Proteome Science, 9, 8.
[4] Miller, H.D., Clark, B.W., Hinton, D.E., et al. (2012) Anchoring ethinylestradiol induced gene expression changes with testicular morphology and reproductive function in the medaka. PLoS One, 7, e52479.
[5] Dubois, A., Deuve, J.L., Navarro, P., et al. (2014) Spontaneous reactivation of clusters of X-linked genes is associated with the plasticity of X-inactivation in mouse trophoblast stem cells. Stem Cells, 32, 377-390.
[6] Lake, S.L., Damato, B.E., Kalirai, H., et al. (2013) Single nucleotide polymorphism array analysis of uveal melanomas reveals that amplification of CNKSR3 is correlated with improved patient survival. American Journal of Pathology, 182, 678-687.
[7] Rooney, J.P., Patil, A., Joseph, F., et al. (2011) Cross-species functionome analysis identifies proteins associated with DNA repair, translation and aerobic respiration as conserved modulators of UV-toxicity. Genomics, 97, 133-147.
[8] Tajika, Y., Sakai, N., Tamura, T., et al. (2005) Crystal structure of PH0010 from Pyrococcus horikoshii, which is highly homologous to human AMMECR1 C-terminal region. Proteins: Structure, Function, and Bioinformatics, 58, 501-503.
[9] Balaji, S. and Aravind, L. (2007) The RAGNYA fold: a novel fold with multiple topological variants found in functionally diverse nucleic acid, nucleotide and peptide-binding proteins. Nucleic Acids Research, 35, 5658-5671.
[10] Wu, X., Tian, L., Li, J., et al. (2012) Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics. Molecular & Cellular Proteomics, 11, 1640-1651.
[11] Kettenbach, A.N., Schweppe, D.K., Faherty, B.K., Pechenick, D., Pletnev, A.A. and Gerber, S.A. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Polo-like kinase ac-tivities in mitotic cells. Science Signaling, 4, rs5.
[12] Huttlin, E.L., Jedrychowski, M.P., Elias, J.E., Goswami, T., Rad, R., Beausoleil, S.A., et al. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell, 143, 1174-1189.
[13] Zhou, H., Di Palma, S., Preisinger, C., Peng, M., Nur Polat, A., Heck, A.J.R. and Mohammed, S. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. Journal of Proteome Research, 12, 260-271.
[14] Wang, H.X., The, M.T., Ji, Y.M., Patel, V., Firouzabadian, S., Patel, A.A., et al. (2010) EPS8 upregulates FOXM1 expression, enhancing cell growth and motility. Carcinogenesis, 31, 1132-1141.
[15] Woodfield, G.W., Chen, Y.Z., Bair, T.B., Domann, F.E. and Weigel, R.J. (2010) Identification of primary gene targets of TFAP2C in hormone responsive breast carcinoma cells. Genes, Chromosomes and Cancer, 49, 948-962.
[16] Yang, Y.P., Chang, Y.L., Huang, P.I., Chiou, G.Y., Tseng, L.M., Chiou, S.H., et al. (2012) Resveratrol suppresses tumorigenicity and enhances radiosensitivity in primary glioblastoma tumor initiating cells by inhibiting the STAT3 axis. Journal of Cellular Physiology, 227, 976-993.
[17] Ishikawa, K., Yoshida, S., Kadota, K., Nakamura, T., Niiro, H., Arakawa, S., et al. (2010) Gene expression profile of hyperoxic/hypoxic retinas in mouse model of oxy-gen-induced retinopathy. Investigative Ophthalmology & Visual Science, 51, 4307-4319.
[18] Fortschegger, K., Graaf, P., Outchkourov, N.S., van Schaik, F.M.A., Marc Timmers, H.T. and Shiekhattar, R. (2010) PHF8 targets histone me-thylation and RNA polymeraseii to activate transcription. Molecular and Cellular Biology, 30, 3286-3298.
[19] Yi, T., Lee, D., Jeon, M.S., Won Kwon, S. and Song, S.U. (2012) Gene expression profile reveals that STAT2 is involved in the immunosuppressive function of human bone marrow-derived mesenchymal stem cells. Gene, 497, 131-139.
[20] Gauglhofer, C., Paur, J., Schrottmaier, W.C., Wingelhofer, B., Huber, D., Naegelen, I., et al. (2014) Fi-broblast growth factor receptor 4: A putative key driver for the aggressive phenotype of hepatocellular carcinoma. Carcinogenesis, 35, 2331-2338.
[21] Gueller, S., Komor, M., Nowak, D., Baldus, C.D., de Vos, S., Hoelzer, D., et al. (2010) Identification of defects in the transcriptional program during lineage-specific in vitro differentiation of CD34+ cells selected from patients with both low- and high-risk myelodysplastic syndrome. Experimental Hematology, 38, 718-732.
[22] Iancu-Rubin, C., Mosoyan, G., Wang, J.P., Kraus, T., Sung, V. and Hoffman, R. (2013) Stromal cell-mediated inhibition of erythropoiesis can be attenuated by Sotatercept (ACE-011), an activin receptor type II ligand trap. Experimental Hematology, 41, 155-166.
[23] Yun, H.Y., Damm, F., Yap, D., Schwarzer, A., Chaturvedi, A., Jyotsana, N., et al. (2014) Impact of MLL5 expression on decitabine efficacy and DNA methylation in acute myeloid leukemia. Haematologica, 99, 1456-1464.
[24] Qi, L.H., Chen, K., Hur, D.J., Yagnik, G., Lakshmanan, Y., Kotch, L.E., et al. (2011) Genome-wide expression profiling of urinary bladder implicates desmosomal and cytoskeletal dysregulation in the bladder exstrophy-epispadias complex. International Journal of Molecular Medicine, 27, 755-765.
[25] Zhao, Y.L., Zacur, H., Cheadle, C., Ning, N., Fan, J.S. and Vlahos, N.F. (2012) Effect of luteal-phase support on endometrial microRNA expression following controlled ovarian stimulation. Reproductive Biology and Endocrinology, 10, 72.
[26] 郭鹏辉, 杜燕蕾, 聂玉强 (2012) miR-191在胃癌组织中的表达及其靶基因的预测. 世界华人消化杂志, 25, 2347-2352.
[27] Cao, B., Ji, T., Zhou, B., Zou, J. and Jiao, G.Q. (2013) Predicting the target genes of microRNA based on microarray data. Genetics and Molecular Research, 12, 6059-6066.
[28] Wang, T., Gu, J. and Li, Y. (2014) Inferring the perturbed microRNA regulatory networks from gene expression data using a network propagation based method. BMC Bioinformatics, 15, 255.
[29] Tsai, Z.Y., Singh, S., Yu, S.L., Kao, L.P., Chen, B.Z., Ho, B.C., et al. (2010) Identification of microRNAs regulated by activin A in human embryonic stem cells. Journal of Cellular Biochemistry, 109, 93-102.
[30] Gerson, K.D., Maddula, V., Seligmann, B., Shearstone, J.R., Khan, A. and Mercurio, A.M. (2012) Effects of β4 integrin expression on microRNA patterns in breast cancer. Biology Open, 1, 658-666.
[31] Tan, S., Ding, K., Li, R., et al. (2014) Identification of miR-26 as a key mediator of estrogen stimulated cell proliferation by targeting CHD1, GREB1 and KPNA2. Breast Cancer Research, 16, R40.
[32] Jiang, M., Huang, O., Xie, Z., Wu, S.C., Zhang, X., Shen, A.J., et al. (2014) A novel long non-coding RNA-ARA: Adriamycin resis-tance-associated. Biochemical Pharmacology, 87, 254-283.
[33] Bauer, H., Schindler, S., Charron, Y., Willert, J., Kusecek, B. and Herrmann, B.G. (2012) The nucleoside diphosphate kinase gene Nme3 acts as quantitative trait locus promoting non-Mendelian inheritance. PLOS Genetics, 8, e1002567.
[34] Abdelmohsen, K., Srikantan, S., Yang, X., Lal, A., Ho Kim, H., Kuwano, Y., et al. (2009) Ubiquitin-mediated proteolysis of HuR by heat shock. EMBO Journal, 28, 1271-1282.
[35] Danielsen, J.M., Sylvestersen, K.B., Bekker-Jensen, S., Szklarczyk, D., Poulsen, J.W., et al. (2011) Mass spectrometric analysis of lysine ubiquitylation reveals promiscuity at site level. Molecular & Cellular Proteomics, 10, M110.003590.