基于分子对接研究甘油脱氢酶的催化多功能性
Enzyme Promiscuity Study of Glycerol Dehydrogenase Based on Molecular Docking
DOI: 10.12677/BIPHY.2015.31003, PDF, HTML, XML, 下载: 3,050  浏览: 9,934  国家自然科学基金支持
作者: 王世珍, 任 红, 张永辉, 李红春, 王媛菁, 方柏山*:厦门大学化学化工学院,化工与生物化工系,福建 厦门
关键词: 甘油脱氢酶酶催化多功能性分子对接手性化合物Glycerol Dehydrogenase Enzyme Promiscuity Molecular Docking Chiral Chemicals
摘要: 基于生物信息学的方法研究甘油脱氢酶的催化多功能性。通过Brenda数据库搜索,查找、归纳甘油脱氢酶(EC1.1.1.6,Glycerol dehydrogenase,GDH)的底物谱。利用分子模拟对接的方法,研究甘油脱氢酶和手性对映体R-1-氨基-2-丙醇和S-1-氨基-2-丙醇的结合模式,获得酶与底物结合的关键氨基酸残基位点为ASP123,THR177,SER243和GLU180。通过比较结合能,研究手性对映体与酶结合的差异性,阐明甘油脱氢酶对R-1-氨基-2-丙醇,S-1-氨基-2-丙醇选择性的来源。分子对接可以反映酶对手性化合物的识别能力,可用作研究甘油脱氢酶的催化多功能性的手性底物谱的初步筛选手段,节省研究时间和成本。
Abstract: Enzyme promiscuity of glycerol dehydrogenase (GDH) was studied based on bioinformatics methods. Substrate specificity of glycerol dehydrogenase (EC1.1.1.6) was profiled by searching and analyzing Brenda data base. R-1-amino-2-propanol and S-amino-2-propanol were docked with glycerol dehydrogenase by Autodock 4.0, respectively. The docking mode was studied. The key amino acid residues identified as ASP123, THR177, SER243 and GLU180. By comparing the binding energy of both enantiomers, the effects of chiral conformation on the combination were analyzed to real the catalytic selectivity of GDH to the enantiomers. These results indicate that molecular docking can be applied as a primary method for exploring the substrate specificity of glycerol dehydrogenase for enzyme promiscuity study which is saving time and costs.
文章引用:王世珍, 任红, 张永辉, 李红春, 王媛菁, 方柏山. 基于分子对接研究甘油脱氢酶的催化多功能性[J]. 生物物理学, 2015, 3(1): 18-24. http://dx.doi.org/10.12677/BIPHY.2015.31003

参考文献

[1] 郭英霞, 王世珍, 王兆守, 陈荣, 方柏山 (2011) 金属离子对甘油脱氢酶活性中心的化学修饰. 厦大学报: 自然科学版, 50, 883-889.
[2] Kawashima, K., Itoh, H. and Chgate, J. (1980) Nonenzymatic browning reactions of dihy-droxyacetone with amino acids or their esters. Agricultural Biological Chemistry, 7, 1595-1599.
[3] 李梓君, 方柏山, 杨仲丽, 朱春杰 (2008) 克雷伯杆菌中甘油脱氢酶的定向进化. 华东六省一市生物化学与分子生物学会2008年学术交流会论文集.
[4] Yamada, H., Nagao, A., Nishise, H., et al. (1982) Formation of glycerol dehydrogenase by microorganisms. Agricultural Biological Chemistry, 9, 2325-2331.
[5] Allleyama, M., Shinagawa, E., Matsushita, K., et al. (1985) Solubilization, purification and properties of membrane- bound glycerol dehydrogenase from Gluconobacter industrius. Agricultural Biological Chemistry, 4, 1001-1010.
[6] Ruzheinikov, S.N., Burke, J., Sedelnikova, S., Baker, P.J., Taylor, R., Bullough, P.A., Muir, N.M., Gore, M.G. and Rice, D.W. (2001) Glycerol dehydrogenase: Structure, specificity, and mechanism of a family III polyol dehydrogenase. Structure, 9, 789-802.
[7] 徐建明, 林贤福 (2007) 酶的催化多功能性及其在有机合成中的新进展. 有机化学, 12, 1473-1478.
[8] Copley, S.D. (2015) An evolutionary biochemist’s perspective on promiscuity. Trends in Biochemical Sciences, 2, 72-78.
[9] Wang, S.-Z., Wang, J., Zhou, X.-F., Guo, Y.-X. and Fang, B.-S. (2013) The improvement of stability, activity and substrate promis-cuity of glycerol dehydrogenase substituted by divalent metal ions. Biotechnology and Bioprocess Engineering, 18, 796-800.
[10] Fang, B.-S., Niu, J., Ren, H., Guo, Y.-X. and Wang, S.-Z. (2014) Mechanistic study of manga-nese-substituted glycerol dehydrogenase using a kinetic and thermodynamic analysis. PLoS ONE, 6, 1-6.
[11] Pandya, C., Farelli, J.D., Dunaway-Mariano, D., et al. (2014) Enzyme promiscuity: Engine of evolutionary innovation. Journal of Biological Chemistry, 44, 30229-30236.
[12] Brendra数据库. http://www.brenda-enzymes.org/enzyme.php?ecno=1.1.1.6#SUBSTRATE
[13] Leichus, B.N. and Blanchard, J.S. (1994) Isotopic analysis of the reaction catalyzed by glycerol dehydrogenase. Biochemistry, 48, 14642-14649.
[14] Vaque, M., Ardrevol, A. and Blade, C. (2008) Protein-ligand docking: A review of recent advances and future perspectives. Current Pharmaceutical Analysis, 4, 1-19.