多巴胺包覆碳纳米管载银复合材料的制备及抑菌性能
Preparation and Antibacterial Properties of Nanosilver-Loaded Polydopamine Coated Multi-Wall Carbon Nanotubes
DOI: 10.12677/JAPC.2015.42004, PDF, HTML, XML,  被引量 下载: 3,036  浏览: 10,648 
作者: 刘 丹, 王洪芬:中国海洋大学,材料科学与工程研究院,山东 青岛;陈晓亮:鲁东大学,化学与材料科学学院,山东 烟台
关键词: 多壁碳纳米管壳聚糖多巴胺纳米复合材料抑菌性能MWCNTs Chitosan Dopamine Nanocomposite Antimicrobial Property
摘要: 以多巴胺在弱碱性条件下自聚合的特点为基础,制备得到聚多巴胺包覆的多壁碳纳米管(PDA-MWCNTs)。然后,利用预合成的聚多巴胺膜层作为纳米导向使得均匀的纳米银粒子沉积在PDA-MWCNTs表面。在该体系中,壳聚糖作为保护剂和稳定剂,利用聚多巴胺的还原及吸附作用,通过原位化学还原法制备得到聚多巴胺包覆碳纳米管/纳米银/壳聚糖复合材料(CS/PDA-MWCNTs/Ag)。通过透射电子显微镜和X射线衍射对复合材料的结构和性能进行表征,分析表明:原位化学还原法比液相还原法更有效的增加了纳米银的附着率。所制得的复合材料具有广谱抑菌性对革兰氏阴性菌和革兰氏阳性菌均有很好的抑菌性能,进一步证实了壳聚糖与纳米银的协同效应可增强复合材料的抑菌性能。
Abstract: On the basis of characteristic of dopamine self-polymerization under slightly alkaline solution, polydopamine (PDA) coated multi-wall carbon nanotubes (MWCNTs) was prepared. Then, the pre-synthesis polydopamine (PDA) layer was utilized as a nanoscale guide to form uniform Ag nanoparticles (Ag NPs) on the surface of PDA-MWCNTs. In this system, chitosan (CS) played a role of protective agent and stabilizer and through the reduction and adsorption action of the PDA layer, PDA coated MWCNTs/Ag NPs/CS composites (CS/PDA-MWCNTs/Ag) were prepared by in-situ chemical reduction. The structure and nature of CS/PDA-MWCNTs/Ag composites were investigated with TEM and XRD. Analysis indicated that the adhesive rate of Ag NPs by in-situ chemical reduction method was superior to liquid phase reducing method. The resulting composites had an efficient broad-spectrum of antibacterial activity against both Gram-negative and Gram- positive bacteria, which further confirmed the synergistic effect of CS and Ag NPs can enhance the antimicrobial properties of hybrid materials.
文章引用:刘丹, 王洪芬, 陈晓亮. 多巴胺包覆碳纳米管载银复合材料的制备及抑菌性能[J]. 物理化学进展, 2015, 4(2): 24-30. http://dx.doi.org/10.12677/JAPC.2015.42004

参考文献

[1] Zhou, H., Liu, Y.F., Chi, W.D., Yu, C.Y. and Yu, Y.J. (2013) Preparation and antibacterial properties of Ag@polydo- pamine/graphene oxide sheet nanocomposite. Applied Surface Science, 282, 181-185.
[2] Lok, C.N., Ho, C.M., Chen, R., He, Q.Y., Yu, W.Y., Sun, H., Tam, P.K., Chiu, J.F. and Che, C.M. (2006) Proteomic analysis of the mode of anti-bacterial action of silver nanoparticles. Journal of Proteome Research, 5, 916-924.
[3] Bhol, K.C. and Schechter, P.J. (2005) Topical nanocrystalline silver cream suppresses inflammatory cytokines and induces apoptosis of inflammatory cells in a murine model of allergic contact dermatitis. British Journal of Dermatology, 152, 1235-1242.
[4] Xu, W.P., Zhang, L.C., Li, J.P., Lu, Y., Li, H.H. and Ma, Y.N. (2011) Facile synthesis of silver@graphene oxide nanocomposites and their enhanced antibacterial properties. Journal of Materials Chemistry, 21, 4593-4597.
[5] Yan, D., Wang, F., Zhao, Y., et al. (2009) Production of a high dispersion of silver nanoparticles on surface-func- tionalized multi-walled carbon nanotubes using an electrostatic technique. Materials Letters, 63, 171-173.
[6] Sharma, V.K., Yngard, R.A. and Lin, Y. (2009) Silver nanoparticles: Green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science, 145, 83-96.
[7] 王婧 (2012) 壳聚糖/纳米银复合抗菌剂合成及羊毛抗菌层界面形成机理探索. 硕士论文, 太原理工大学, 太原.
[8] Rajatendu, S. and Anirban, G. (2007) MWCNT reinforced Polyamide-6,6 films: Preparation, characterization and properties. Journal of Materials Science, 42, 923-934.
[9] You, Y.Z., Hong, C.Y. and Pan, C.Y. (2006) Directly growing ionic polymers on multi-walled carbon nanotubes via surface RAFT polymerization. Nanotechnology, 17, 2350-2354.
[10] Wu, F., He, X. and Zeng, Y. (2006) Thermal transport enhancement of multi-walled carbon nanotubes/high-density polyethylene composites. Applied Physics A, 85, 25-28.
[11] Gunawan, P., Guan, C., Song, X.H., Zhang, Q.Y., Leong, S.S.J. and Tang, C.Y. (2011) Hollow fiber membrane decorated with Ag/MWNTs: Toward effective water disinfection and biofouling control. Acs Nano, 5, 10033-10040.
[12] Xi, Z.Y., Xu, Y.Y., Zhu, L.P., Wang, Y. and Zhu, B.K. (2009) A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly(DOPA) and poly(dopamine). Journal of Membrance Science, 327, 244-253.
[13] Zhang, Z., Zhang, J., Zhang, B.L. and Tang, J.L. (2013) Mussel-inspired functionalization of graphene for synthesizing Ag-polydopamine-graphene nanosheets as antibacterial materials. Nanoscale, 5, 118-123.
[14] Bianco, A. (2013) Graphene: Safe or toxic? The two faces of the medal. Angewandte Chemie International Edition, 52, 4986-4997.