噻吩与过渡金属M = (Co, Ni, Cu, Zn)吸附行为的量化研究
Density Functional Theory Study of Thiophene Molecular Adsorb Behavior on the Metal as M = (Co,Ni,Cu,Zn)
DOI: 10.12677/JAPC.2015.42005, PDF, HTML, XML, 下载: 2,794  浏览: 9,407  科研立项经费支持
作者: 龙 威:南华大学化学化工学院,湖南 衡阳
关键词: 噻吩裂解过渡金属密度泛函吸附行为Thiophene Cracking Transition Metal Density Functional The Adsorption Behavior
摘要: 如何实现过渡金属高效催化噻吩裂解脱硫是石油加工环节的重大难题。在已有的实验基础上,我们利用Gaussian03程序,采用密度泛函理论(DFT),使用B3LYP方法在Genecp基组水平上研究了噻吩分子与四种过渡金属M = (Co, Ni, Cu, Zn)的吸附微观行为。计算结果表明:不同的过渡金属原子对噻吩分子的吸附存在着不同的吸附位,过渡金属Co与Cu吸附以α位为主,吸附后能量分别降低了479.621 kJ/mol和369.203 kJ/mol;过渡金属Ni吸附以β位为主,吸附后能量降低了高达671.241 kJ/mol;过渡金属Zn吸附以δ位为主,吸附后能量降低了165.094 kJ/mol,过渡金属Cu与Zn原子吸附噻吩分子还存在有θ位的吸附。吸附能量的计算应考虑零点能的校正。
Abstract: How to realize high catalytic desulfurization of thiophene cracking of transition metals is the major problem of petroleum processing. On the basis of the existing experiment, we combine Gaussian03 progress with the density functional theory (DFT) and B3LYP method to study the thiophene molecular adsorb microscopic behavior on the four kinds of transition metal as M = (Co,Ni,Cu,Zn) on Genecp basis set level. Calculation results show that: different transition metal atoms of thiophene molecular adsorption, adsorption exists different; transition metal Co and Cu adsorption is given priority to with alpha, the energy of which after the adsorption decreased 479.621 and 369.203 kJ/mol respectively; transition metal Ni adsorption is given priority to with beta, the energy of which after the adsorption decreased as high as 671.241 kJ/mol; transition metal zinc adsorption to the delta is given priority to, the energy of which after the adsorption decreased after 165.094 kJ/mol; There is another adsorb behavior as θ position exists about thiophene molecule on the transition metal Cu and Zn. The calculation of adsorption energy should consider the zero-point energy correction.
文章引用:龙威. 噻吩与过渡金属M = (Co, Ni, Cu, Zn)吸附行为的量化研究[J]. 物理化学进展, 2015, 4(2): 31-37. http://dx.doi.org/10.12677/JAPC.2015.42005

参考文献

[1] Potapenko, O.V., Doronin, V.P., Sorokina, T.P., Talsi V.P. and Likholobov, V.A. (2012) Transformations of thiophene compounds under catalytic cracking conditions. Applied Catalysis B: Environmental, 117-118, 177-184.
[2] Biswajit, S. and Sonali, S. (2015) Influence of different hydrocarbon components in fuel on the oxidative desulfurisation of thi-ophene: Deactivation of catalyst. Fuel, 150, 679-686.
[3] 龙威, 颜雪明 (2013)过渡金属在石油脱硫技术中的催化作用. 佛山科学技术学院学报(自然科学版), 4, 22-29.
[4] 李翔, 王安杰, 孙仲超, 等 (2013) 全硅MCM-41担载的Ni-W催化剂上二苯并噻吩加氢脱硫反应动力学研究. 石油学报(石油加工), 4, 1-7 .
[5] Bezverkhyy, L., Ryzhikov A., Gadacz G. and Bellat J.P. (2008) Kinetics of thiophene reactive adsorption on Ni/SiO2 and Ni/ZnO. Ca-talysis Today, 130, 199-205.
[6] Pawelec, B., Mariscal, R., Navarro, R.M., Campos-Martin, J.M. and Fierro, J.L.G. (2004) Simultaneous 1-pentene hydroisomerisation and thiophene hydrodesulphurisation over sulphided Ni/FAU and Ni/ZSM-5 catalysts. Applied Catalysts A: General, 262, 155-166.
[7] Baeza, P., Aguila, G., Vargas, G., Ojeda, J. and Araya, P. (2012) Adsorption of thiophene and dibenzothiophene on highly dispersed Cu/ZrO2 absorbents. Applied Ca-talysis B: Environmental, 111-112, 133-140.
[8] Jose, N., Sengupta, S. and Basu, J.K. (2011) Optimization of oxida-tive desulfurization of thiophene using Cu/titanium silicate-1 by box-behnken desigen. Fuel, 90, 626-632.
[9] Potapenko, O., Doronin, V.P., Sorokina, T.P., Talsi, V.P. and Likholobov, V.A. (2012) Transforma-tionsof thiophene compounds under catalytic cracking conditions. Applied Catalysis B: Environmental, 117-118, 117-118.
[10] Zhang, J.C., Liu, Y.L., Tian, S., Chai, Y.M. and Liu, C.G. (2010) Reactive adsorption of thiophene on Ni/ZnO adsorbent:Effect of ZnO textural structure on the desulfurization activity. Journal of Natural Gas Chemistry, 19, 327-332.
[11] Potapenko, O.V., Doronin, V.P., Sorokina, T.P., Talsi, V.P. and Likholobov, V.A. (2012) Trans-formations of thiophene compounds under catalytic cracking conditions. Applied Catalysis B: Environmental, 117-118, 177-184.
[12] Saha, B. and Sengupta, S. (2015) Influence of different hydrocarbon components in fuel on the oxidative desulfurisation of thiophene: Deactivation of catalyst. Fuel, 150, 679-686.
[13] Parola, V.L., Testa, M.L. and Venezia, A.M. (2012) Pd and PdAu catalysts supported over 3-MPTES grafted HMS used in the HDS of thiophene. Applied Catalysis B: Environmental, 119-120, 248-255.
[14] 郑柯文, 高金森, 徐春明 (2004) 噻吩催化裂化脱硫机理的量子化学分析. 化工学报, 1, 87-90.
[15] 徐坤, 冯杰, 褚绮, 张丽丽, 李文英 (2014) 噻吩在γ-Mo2N(100)表面上加氢脱硫反应的密度泛函理论研究. 物理化学学报, 11, 2063-2070.
[16] 陈龙, 王渭娜, 卢天宇, 王文亮 (2014) 2-甲基噻吩与NO3反应机理的理论研究. 陕西师范大学学报, 4, 36-44.
[17] 戴凤威, 邓存宝, 邓汉忠, 王雪峰, 高飞, 张勋 (2014) 噻吩结构与O2反应机理的理论研究. 煤炭学报, 4, 699- 704.
[18] 徐文媛, 龙威, 杜瑞焕 (2011) 镍基上CH4脱氢与超临界CO2重整的量化计算. 化学通报, 8, 732-736.
[19] Govind, N., Petersen, M., Fitzgerald, G., King-Smith, D. and Andzelm, J. (2003) A generalized synchronous transit method for transition state location. Computational Materials Science, 28, 250-258.
[20] Malick, D.K., Petersson, G.A. and Montgomery Jr., J.A. (1998) Transition states for chemical reactions I: Geometry and classical barrier height. The Journal of Chemical Physics, 108, 5704-5713.