铁电极化调控CO在Pt表面的吸附
The CO Absorption on Pt Film Tuned by Ferroelectric Polarization
DOI: 10.12677/CMP.2015.42006, PDF, HTML, XML, 下载: 2,810  浏览: 8,204  国家自然科学基金支持
作者: 刘 超, 曹觉先:湘潭大学物理系,纳米物理与稀土发光研究所,湖南 湘潭
关键词: 第一性原理铂催化剂铁电材料化学吸附CO中毒First Principle Platinum Catalyst Ferroelectric Materials Chemisorption Carbon Monoxide Poisoning
摘要: 基于密度泛函理论的第一性原理,以BaTiO3和PbTiO3两种典型的铁电材料为例,我们探讨了铁电极化对CO在Pt薄膜表面吸附的影响。计算结果表明当极化方向为正时,CO在Pt/PbO/PbTiO3表面顶位的吸附能为−2.53 eV,而当极化方向反向时,CO的吸附能变为−1.39 eV。这表明铁电薄膜的铁电极化可有效调控CO在Pt表面的吸附。这种调控主要是由于极化所诱导的界面电场有效地改变了CO的4σ、1π、5σ轨道与Pt5d轨道之间的成键耦合。我们的研究为寻找抑制质子交换膜“CO中毒”的催化材料提供了新的方法。
Abstract: We investigated the CO absorption on Pt film tuned by ferroelectric polarization of BaTiO3 and PbTiO3. Our results have demonstrated that the adsorption properties can be dramatically mod-ulated by the ferroelectric polarization. Especially, we found that the chemisorption energy are −2.53 eV with positive ferroelectric polarization for CO adsorbed on the top site of Pt/PbO/PbTiO3 while the chemisorptions energy reduce to −1.39 eV with inversion of the polarization direction. It is found that the coupling strength for the 4σ, 1π, 5σ orbital and 5d orbital of Pt can be tuned by the interfacial electric filed induced by the polarization of ferroelectric film. Our studies provide new approach for carbon monoxide poisoning resistant in proton exchange membrane catalytic material.
文章引用:刘超, 曹觉先. 铁电极化调控CO在Pt表面的吸附[J]. 凝聚态物理学进展, 2015, 4(2): 55-61. http://dx.doi.org/10.12677/CMP.2015.42006

参考文献

[1] Le Canut, J.M., Abouatallah, R.M. and Harrington, D.A. (2006) Detection of membrane drying, fuel cell flooding, and anode catalyst poisoning on PEMFC stacks by electrochemical impedance spectroscopy. Journal of the Electrochemical Society, 153, A857-A864.
[2] Waszczuk, P., Lu, G.Q., Wieckowski, A., Lu, C., Rice, C. and Masel, R.I. (2002) UHV and electrochemical studies of CO and methanol adsorbed at platinum/ruthenium surfaces, and reference to fuel cell catalysis. Electrochimica Acta, 47, 3637-3652.
[3] Iwasita, T., Hoster, H., John-Anacker, A., Lin, W.F. and Vielstich, W. (2000) Methanol Oxidation on PtRu Electrodes. Influence of Surface Structure and PtRu Atom Distribution. Langmuir, 16, 522-529.
[4] Rigsby, M.A., Zhou, W.P., Lewera, A., et al. (2008) Experiment and theory of fuel cell catalysis: Methanol and formic acid decomposition on nanoparticle Pt/Ru. The Journal of Physical Chemistry C, 112, 15595-15601.
[5] Igarashi, H., Fujino, T. and Watanabe, M. (1995) Hydrogen electro-oxidation on platinum catalysts in the presence of trace carbon monoxide. Journal of Electroanalytical Chemistry, 391, 119-123.
[6] Zhang, J.L., Vukmirovic, M.B., Xu, Y., Mavrikakis, M. and Adzic, R.R. (2005) Controlling the catalytic activity of plati-num-monolayer electrocatalysts for oxygen reduction with different substrates. Angewandte Chemie International Edition, 44, 2132-2135.
[7] Xiong, L. and Manthiram, A. (2005) Effect of atomic ordering on the catalytic activity of carbon supported PtM (M=Fe,Co, Ni, and Cu) alloys for oxygen reduction in PEMFCs. Journal of the Electrochemical Society, 152, A697- A703.
[8] Gong, X.Q., Raval, R. and Hu, P. (2004) General insight into CO oxidation: A density functional theory study of the reaction mechanism on platinum oxides. Physical Review Letters, 93, 106104.
[9] Christoffersen, E., Liu, P., Ruban, A., Skriver, H.L. and Nørskov, J.K. (2001) Anode materials for low-temperature fuel cells: A density functional theory study. Journal of Catalysis, 199, 123-131.
[10] Stadler, H.L. (1965) Changing properties of metals by ferroelectric polarization charging. Physical Review Letters, 14, 979.
[11] Park, C. and Baker, R.T.K. (1998) Carbon deposition on iron-nickel during interaction with ethylene-hydrogen mixtures. Journal of Catalysis, 179, 361-374.
[12] Park, C. and Baker, R.T.K. (2000) Induction of an electronic perturbation in supported metal catalysts. The Journal of Physical Chemistry B, 104, 4418-4424.
[13] Inoue, Y. and Watanabe, Y. (1993) Use of LiNbO3 for design of device-type catalysts with activity controllable functions. Catalysis Today, 16, 487-494.
[14] Monkhorst, H.J. and Pack, J.D. (1976) Special points for Brillouin-zone integrations. Physical Review B, 13, 5188- 5192.
[15] 肖长江, 靳常青, 王晓慧 (2007) 纳米钛酸钡陶瓷的晶体结构. 功能材料, 10, 1621-1623.
[16] 李荣生, 王国甲 (1990) 催化作用基础. 科学出版社, 北京, 25-28.
[17] 杜森昌 (2008) 铂及其合金表面上一氧化碳氧化反应的理论研究. 硕士论文, 中国石油大学, 青岛.