四方哈伯德团簇中对角跃迁和近邻库仑相互作用的物理影响
Effect of Diagonal Hopping and Nearest-Neighbor Coulomb Interaction in Square Hubbard Clusters
DOI: 10.12677/CMP.2015.42007, PDF, HTML, XML, 下载: 2,823  浏览: 8,619  国家自然科学基金支持
作者: 吴永政, 梅 聪, 黄忠兵*:湖北大学物理与电子科学学院,湖北 武汉;高 云:湖北大学材料科学与工程学院,湖北 武汉
关键词: 铜氧化物高温超导体四方哈伯德团簇电子配对自旋和电荷配对High-Tc Cuprates Square Hubbard Cluster Electron Pairing Spin and Charge Pairing
摘要: 铜氧化物高温超导体中纳米尺度的电子态对理解这类材料的复杂物理特性和非常规超导机理具有重要的意义。本文采用数值精确对角化方法研究了纳米尺度四方哈伯德团簇中对角跃迁t'和近邻库仑相互作用V对电子对束缚能、自旋和电荷能隙及其对应跨越温度的物理影响。研究结果表明对角跃迁t'有效地扩展了电子配对、自旋和电荷配对的哈伯德U参数区间,升高了它们对应的跨越温度;与此相反,近邻库仑相互作用V显著地缩小了电子配对、自旋和电荷配对的哈伯德U参数区间,并降低了它们对应的跨越温度。当V与哈伯德U产生的有效电子吸引相互作用能量尺度相当时,在整个U值区间不能形成稳定的电子配对态。我们的研究结果说明t'有利于形成电子配对的超导态,而V将抑制超导态的形成。
Abstract: In the high-Tc cuprates, the nanoscale electronic state is important for understanding their com-plex physical properties and unconventional superconducting mechanism. In this work, numerical exact diagonalization method has been used to study the effect of diagonal hopping t' and nearest-neighbor Coulomb interaction V on the electron pair binding energy, spin and charge gaps and corresponding crossover temperatures in the square Hubbard clusters. The calculated results show that t' extends the regime of U in which electron, spin and charge pairings are formed, and corresponding crossover temperature increased. On the contrary, V exhibits opposite effects com- pared to t'. When V approaches to the energy scale of effective attraction induced by U, electron pairing is completely destroyed. Our findings demonstrate that t' can help the formation of superconducting state, while V will suppress the superconductivity.
文章引用:吴永政, 梅聪, 高云, 黄忠兵. 四方哈伯德团簇中对角跃迁和近邻库仑相互作用的物理影响[J]. 凝聚态物理学进展, 2015, 4(2): 62-69. http://dx.doi.org/10.12677/CMP.2015.42007

参考文献

[1] Dagotto, E. (2005) Complex in strongly correlated electronic systems. Science, 309, 257-262.
[2] Tranquada, J.M., Sternlieb, B.J., Axe, J.D., Nakamura, Y. and Uchida, S. (1995) Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature, 375, 561-563.
[3] Hanaguri, T., Lupien, C., Kohsaka, Y., Lee, D.-H., Azuma, M., Takano, M., Takagi, H. and Davis, J.C. (2004) A “checkerboard” electronic crystal state in lightly hole-doped Ca2-xNaxCuO2Cl2. Nature, 430, 1001-1005.
[4] Ghiringhelli, G., Le Tacon, M., Minola, M., Blanco-Canosa, S., Mazzoli, C., Brookes, N.B., De Luca, G.M., Frano, A., Hawthorn, D.G., He, F., Loew, T., Moretti Sala, M., Peets, D.C., Salluzzo, M., Schierle, E., Sutarto, R., Sawatzky, G. A., Weschke, E., Keimer, B. and Braicovich, L. (2014) Long-Range Incommensurate Charge Fluctuations in (Y,Nd)Ba2Cu3O6+x. Science, 337, 821-825.
[5] Schumann, R. (2002) Thermodynamics of a 4-site Hubbard model by analytical diagonalization. Annales de Physique (Leipzig), 11, 49-87.
[6] Kocharian, A.N., Fernando, G.W., Palandage, K. and Davenport, J.W. (2006) Exact study of charge-spin separation, pairing fluctuations, and pseudogaps in four-site Hubbard clusters. Physical Review B, 74, Article ID: 024511.
[7] Kocharian, A.N., Fernando, G.W., Wang, T., Palandage, K. and Davenport, J.W. (2007) Exact thermodynamics of pairing and charge-spin separation crossovers in small Hubbard nanoclusters. Physics Letters A, 364, 57-65.
[8] Kocharian, A.N., Fernando, G.W., Palandage, K. and Davenport, J.W. (2007) Electron coherent and incoherent pairing instabilities in inhomogeneous bipartite and nonbipartite nanoclusters. Physics Letters A, 373, 1074-1082.
[9] Fernando, G.W., Kocharian, A.N., Palandage, K., Wang, T. and Davenport, J.W. (2007) Phase separation and electron pairing in repulsive Hubbard clusters. Physical Review B, 75, 085109.
[10] Kocharian, A.N., Fernando, G. W., Palandage, K. and Davenport, J.W. (2008) Coherent and incoherent pairing instabilities and spin-charge separation in bipartite and nonbipartite nanoclusters: Exact results. Physical Review B, 78, Article ID: 075431.
[11] Kocharian, A.N., Fernando, G.W., Palandage, K. and Davenport, J.W. (2009) Spin-charge separation and electron pairing instabilities in Hubbard nanoclusters. Ultramicroscopy, 109, 1066-1073.
[12] Huang, Z.B., Lin, H.Q. and Gubernatis, J.E. (2001) Quantum Monte Carlo study of spin, chrage, and pairing correlations in the t-t'-U Hubbard model. Physical Review B, 64, Article ID: 205101.
[13] Onari, S., Arita, R., Kuroki, K. and Aoki, H. (2004) Phase diagram of the two-dimensional extended Hubbard model: Phase transitions between different pairing symmetries when charge and spin fluctuations coexist. Physical Review B, 70, Article ID: 094523.