Al-Cu-Mg合金的预变形、位错密度与位错强化的定量研究
The Quantitative Research of Deformation, Dislocation Density and Dislocation Strengthening in Al-Cu-Mg Alloy
DOI: 10.12677/MS.2015.53018, PDF, HTML, XML,  被引量 下载: 3,202  浏览: 6,586  国家自然科学基金支持
作者: 雷郴祁, 邓运来, 陈明安:中南大学材料科学与工程,湖南 长沙;张 劲:中南大学轻合金研究院,湖南 长沙
关键词: 位错密度预变形位错强化Al-Cu-Mg合金Dislocation Density Pre-Deformation Dislocation Strengthening Al-Cu-Mg Alloy
摘要: 通过拉伸性能测试、X射线衍射仪(XRD)和透射电镜(TEM)分析等方法,研究了Al-Cu-Mg合金的预变形、位错密度与位错强化的定量关系。结果表明:预变形增加了合金热轧板的位错密度,使晶内析出相细小弥散分布,提高了合金的强度,缩短了合金达到峰值时效的时间。采用TEM网格交线法和XRD图谱法测得的位错密度都随着预变形量的增加而增大,增大速率逐渐减小,最终趋于饱和,建立了位错密度与预变形量的函数模型ρ=1.28-1.08e-0.7ε。根据实验数据作出了预变形产生的位错强化随着位错密度的关系曲线图,由此得到了合金热轧板固溶态的位错强化值为67 MPa,占合金固溶态总强度的27%,获得了合金位错强化与位错密度的关系:σd=150ρ1/2
Abstract: The quantitative research of deformation, dislocation density and aging strengthening in Al-Cu-Mg alloy during artificial aging was studied by tensile test, X-ray diffractometry (XRD) and transmission electron microscopy (TEM). The results indicate that the pre-deformation increased the dislocation density of the alloy hot-rolled plate, refined the size of precipitated phase, improved the strength of alloy and reduced the time of peak aging. The dislocation density measured by TEM line intersection method and XRD profile method becomes higher with the increase of predeformation and the increase rate is gradually decreased. Finally it tends to saturation, and the function model of dislocation density and pre-deformation is established:ρ=1.28-1.08e-0.7ε . According to the experimental data, the curve of dislocation strengthening caused by pre-deformation and dis-location density is made, therefore, the dislocation strength of 67 MPa of the alloy hot-rolled plate at solid solution state is obtained, which accounts for 27% of strength of the alloy at solid solution state. And we obtain the relationship between dislocation strengthening and dislocation density: σd=150ρ1/2 .
文章引用:雷郴祁, 张劲, 邓运来, 陈明安. Al-Cu-Mg合金的预变形、位错密度与位错强化的定量研究[J]. 材料科学, 2015, 5(3): 126-133. http://dx.doi.org/10.12677/MS.2015.53018

参考文献

[1] Heinz, A., Haszler, A., Keidel, C., et al. (2000) Recent development in aluminum alloys for aerospace applications. Materials Science and Engineering: A, 280, 102-107.
[2] 王建国, 王祝堂 (2013) 航空航天变形铝合金的进展(2). 轻合金加工技术, 9, 1-10.
[3] Muthu, K.S. (2011) Evaluation of precipitation reaction in 2024 Al-Cu alloy through ultrasonic parameters. Materials Science and Engineering: A, 528, 4152-4158.
[4] Badini, C., Marino, F. and Verné, E. (1995) Calorimetric study on precipitation path in 2024 alloy and its SiC composite. Materials Science and Engineering: A, 191, 185-191.
[5] Shih, H.C., Ho, N.J. and Huang, J.C. (1996) Precipitation behaviors in Al-Cu-Mg and 2024 aluminum alloys. Metallurgical and Materials Transactions A, 27, 2479-2494.
[6] 周亮, 邓运来, 晋坤, 等 (2010) 预处理对2124铝合金板材蠕变时效微结构与力学性能的影响. 材料工程, 2, 81- 85.
[7] 赵建华, 陈泽宇, 李思宇, 等 (2012) 初始状态对2124铝合金蠕变时效行为与力学性能的影响. 材料工程, 10, 63-67.
[8] Zhang, J., Deng, Y.L. and Zhang, X.M. (2013) Constitutive modeling for creep age forming of heat-treatable strengthening aluminum alloys containing plate or rod shaped precipitates. Materials Science and Engineering: A, 563, 8-15.
[9] Xu, F.S., Zhang, J., Deng, Y.L., et al. (2014) Precipitation orientation effect of 2124 aluminum alloy in creep aging. Transactions of Nonferrous Metals Society of China, 24, 2067-2071.
[10] Ungár, T. (2001) Dislocation densities, arrangements and character from X-ray diffraction experiments. Materials Science and Engineering: A, 309-310, 14-22.
[11] Ungár, T. Gubicza, J., Hanák, P., et al. (2001) Densities and character of dislocations and size-distribution of subgrains in deformed metals by X-ray diffraction profile analysis. Materials Science and Engineering: A, 319-321, 274-278.
[12] Ungar, T., Dragomir, I., Révész, Á. and Borbély, A. (1999) The contrast of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice. Journal of Applied Crystallography, 32, 992-1002.
[13] Renzetti, R.A., Sandim, H.R.Z., Bolmaro, R.E., et al. (2012) X-ray evaluation of dislocation density in ODS-Eurofer steel. Materials Science and Engineering: A, 534, 142-146.
[14] Ribárik, G. and Ungár, T. (2010) Characterization of the microstructure in random and textured polycrystals and single crystals by diffraction line profile analysis. Materials Science and Engineering: A, 528, 112-121.
[15] Pešička, J., Kužel, R., Dronhofer, A. and Eggeler, G. (2003) The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels. Acta Materialia, 51, 4847-4862.