水溶性刷形聚硅氧烷的合成及聚集行为
Synthesis and Aggregation Behavior of Water Soluble Brush-Like Polysiloxanes
DOI: 10.12677/JAPC.2015.42007, PDF, HTML, XML, 下载: 2,538  浏览: 7,949  国家自然科学基金支持
作者: 陈景远, 赖阳鸿, 钟细明, 吴 旭:广州大学,化学化工学院,广东 广州 ;马爱青, 孙克己:中国石化胜利油田分公司采油工艺研究院,山东 东营 ;王金本:中国科学院化学研究所,胶体、界面与化学热力学重点实验室,北京
关键词: 聚硅氧烷水溶性聚集行为硅氢加成Polysiloxane Water Solubility Aggregation Behavior Hydrosilylation
摘要: 本文通过4种含氢硅油与烯丙基聚醚之间的硅氢加成反应,合成了一系列不同亲水侧链含量的水溶性刷形聚硅氧烷,采用稳态荧光、动态光散射(DLS)和透射电子显微镜(TEM)研究了产物的聚集行为。研究发现,含较多亲水侧链的聚硅氧烷,可聚集形成结构更松散的球形多分子聚集体,聚集体表层的亲水链段密度更大,可使溶液体系更为澄清。相关分子层面与溶液性状的规律性结论可帮助设计具有预期性能的高分子体系。
Abstract: A series of water soluble brush-like polysiloxane with varying hydrophilic side-chains were syn-thesized by hydrosilylation between 4 kinds of hydride-containing polysiloxanes and unsaturated polyethyleneoxide, and the aggregation behavior was investigated using steady-state fluorescence, dynamic light scattering (DLS), and transmission electron microscopy (TEM). The polysiloxanes with more hydrophilic side-chains would form spherical multipolymer assemblies with a comparatively loose and swollen structure. The density of the hydrophilic side-chains outside the assemblies increased, leading to a solution with improved visible clearness. The obtained relationship between the molecular behavior and the solution characteristics could help design macromolecular systems with expected properties.
文章引用:陈景远, 赖阳鸿, 钟细明, 吴旭, 马爱青, 孙克己, 王金本. 水溶性刷形聚硅氧烷的合成及聚集行为[J]. 物理化学进展, 2015, 4(2): 45-51. http://dx.doi.org/10.12677/JAPC.2015.42007

参考文献

[1] Ueda, M., Hashidzume, A. and Sato. T. (2011) Unicore-multicore transition of the micelle formed by an amphiphilic alternating copolymer in aqueous media by changing molecular weight. Macromolecules, 44, 2970-2977.
[2] Suwa, M., Hashidzume, A., Morishima, Y., et al. (2000) Self-association behavior of hydrophobically modified poly(aspartic acid) in water studied by fluorescence and dynamic light scattering techniques. Macromolecules, 33, 7884-7892.
[3] Noda, T., Hashidzume, A. and Morishima, Y. (2001) Effects of spacer length on the side-chain micellization in random copolymers of sodium 2-(acrylamido)-2-methylpropanesulfonate and methacrylates substituted with ethylene oxide- based surfactant moieties. Macromolecules, 34, 1308-1317.
[4] Noda, T., Hashidzume, A. and Morishima, Y. (2000) Rheological properties of transient networks formed from copoly- mers of sodium acrylate and methacrylates substituted with amphiphiles: Coparison with sodium 2-(acrylamido)-2-me- thylpropanesulfonate copolymers. Langmuir, 16, 5324-5991.
[5] Zhang, Z.C., Dong, J., West, R., et al. (2010) Oligo(ethylene glycol)-functionalized disiloxanes as electrolytes for lithium-ion batteries. Journal of Power Sources, 195, 6062-6068.
[6] Xiong, D., Liu, G. and Duncan. E.J.S. (2012) Diblock-copolymer-coated water- and oil-repellent cotton fabrics. Lang- muir, 28, 6911-6918.
[7] Wu, X., Wang, J.B., Yang, H. et al. (2013) Self-assembly of brush-like amphiphilic statistical polymers: The effect of salt stimulus on the molecular associative mode. Supramolecular Chemistry, 25, 151-157.
[8] Xue, L., Wang, D.X., Yang, Z.Z. et al. (2013) Facile, versatile and efficient synthesis of functional polysioxanes via thiol-ene chemistry. European Polymer Journal, 49, 1050-1056.