高碱度烧结矿低温还原过程中粉化机理的研究
The Chalking Mechanism of High-Basicity Sinter in Low-Temperature Reduction Process
DOI: 10.12677/MEng.2015.22010, PDF, HTML, XML, 下载: 2,277  浏览: 7,367 
作者: 胡良志, 张振亚:安徽工业大学冶金工程学院,安徽 马鞍山
关键词: 赤铁矿磁铁矿气孔显微结构Hematite Magnetite Pore Microstructure
摘要: 于显微镜下观察高碱度烧结矿低温还原20、40、60 min后显微结构的变化。研究发现烧结矿在低温还原时赤铁矿向磁铁矿的转变很少,烧结矿低温还原时显气孔率和体积几乎不变。进一步研究发现,低温还原时铁酸钙分解为赤铁矿生成新的小气孔,随反应的进行气孔变大导致相邻气孔不断合并,使烧结矿变为疏松大气孔结构,强度不断下降,这是造成烧结矿低温粉化的一个重要原因。
Abstract: The change of microstructure of high-basicity sinter after undergoing low-temperature reduction for 20, 40 and 60 min was observed. The study found that hematite transformed rarely to magne-tite in low-temperature reduction process of sinter, and the sinter’s apparent porosity and volume were almost constant. Further study found that with calcium ferrite decomposing into hematite in low-temperature reduction process, new small pores were generated, and the pores became larger along with the reaction, which resulted in merging of the adjacent pores. After that, the sinter’s structure became loose with big pores, and its intensity decreased, which caused chalking of the sinter in low temperature.
文章引用:胡良志, 张振亚. 高碱度烧结矿低温还原过程中粉化机理的研究[J]. 冶金工程, 2015, 2(2): 64-69. http://dx.doi.org/10.12677/MEng.2015.22010

参考文献

[1] 王筱留 (2013) 钢铁冶金学(炼铁部分) (第三版). 化学工业出版社, 北京.
[2] 梁中渝 (2009) 炼铁学. 冶金工业出版社, 北京, 129-134.
[3] 刘竹林 (2007) 炼铁原料. 化学工业出版社, 北京, 7.
[4] Bronnekamp, H., Haas, H., Kleppe, W., et al. (1980) Plant trials on factors determining sinter quality and resulting blast furnace performance. Ironmaking and Steelmaking, 7, 17- 25.
[5] 徐瑞图, 吴胜利 (1997) 中国铁矿石烧结研究. 冶金工业出版社, 北京.
[6] 白永强, 程树森 (2012) 低钛烧结矿还原粉化机理研究. 烧结球团, 1, 1-5.
[7] 白永强, 程树森, 赵宏博, 霍守锋 (2011) 钒钛烧结矿还原粉化过程的矿相分析. 烧结球团, 2, 1-6.
[8] 李之甫 (1995) 铁矿石烧结矿低温还原粉化机理研究. 烧结球团, 3, 25-29.
[9] Ishikawa, Y., Shimomura, Y., Sasaki, M., et al. (1983) Improve-ment of sinter quality based on the mineralogical properties of orea. Proceedings Ironmaking Conference, 42, 17-29.
[10] Shigaki, I., Sawada, M., Maekawa, M. and Narita, K. (1982) Fundamental study of size degradation me-chanism of agglomerates during reduction. Transactions of the Iron and Steel Institute of Japan, 22, 838-847.
[11] Sakamoto, N., Fukuyo, H., Iwata, Y., et al. (1984) Kinetics of reducibility of sinter. Tetsu to Hagane, 70, 504-511.