氮在丛枝菌根中的代谢过程及其生理生态调控机制
Nitrogen Metabolism of Arbuscular Mycorrhizal Symbiosis and Its Physiological and Ecological Regulation Mechanism
DOI: 10.12677/BR.2015.43009, PDF, HTML, XML,  被引量 下载: 3,165  浏览: 14,348  科研立项经费支持
作者: 曹 敏, 高 媛, 刘 贝, 陈 珂, 杨晓红:西南大学农学部园艺园林学院,南方山地园艺学教育部重点实验室,重庆;余 米:西南大学动物科技学院,重庆;黄先智:西南大学蚕学与系统生物学研究所,重庆
关键词: 丛枝菌根氮代谢转运途径再分配Arbuscular Mycorrhizae (AM) Nitrogen Metabolism Transportation Pathway Redistribution
摘要: 绝大多数陆生植物对丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)有着高度的依赖性,它们形成共生关系后植物为真菌提供光合C满足真菌生长发育基本需求,真菌帮助植物吸收更多的矿质营养(尤其是P和N),促进植物生长发育。本文重点评述了AMF可吸收的土壤氮形态,氮素在丛枝菌根共生体(arbuscular mycorrhizal, AM)内外的传递路径、形态转化和降解过程,及AM中氮素转运和代谢相关的分子基础;分析了影响AMF吸收利用外源氮的可能因素以及AMF促进氮素在相邻植物间的传递和再分配功能,认为丛枝菌根共生体在土壤–真菌–植物氮循环中具有重要的生理生态学意义,并对AMF的未来研究进行了展望。
Abstract: The most majority of terrestrial plants have a high dependence on arbuscular mycorrhizal fungi (AMF). When they form a symbiotic relationship plants provide carbon to the fungus to ensure the basic growth demand of fungi. And fungi can promote plants to absorb more nutrients (especially P and N) at the same time. This paper reviews the forms of nitrogen in soil uptake by AMF, the transportation pathway and degradation of nitrogen in AM symbiotic as well as the molecular basis of nitrogen transport and metabolism. The possible factors those can influence external nitrogen absorption were summarized. The external nitrogen transportation and redistribution pro- cesses in AM were analyzed. Arbuscular mycorrhizal symbiosis had physiological and ecological significance in the nitrogen cycling of soil-fungi-plant. And the future research of AMF is prospected.
文章引用:曹敏, 高媛, 刘贝, 陈珂, 余米, 杨晓红, 黄先智. 氮在丛枝菌根中的代谢过程及其生理生态调控机制[J]. 植物学研究, 2015, 4(3): 64-75. http://dx.doi.org/10.12677/BR.2015.43009

参考文献

[1] Redecker, D., Kodner, R. and Graham, L.E. (2000) Glomalean fungi from the Ordovician. Science, 289, 1920-1921.
[2] Treseder, K.K. (2013) The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content. Plant and Soil, 371, 1-13.
[3] 施松梅, 陈珂, 涂波, 等 (2013) 石漠化地区桑根际 AM 真菌多样性及桑壮苗培育研究. 西南大学学报(自然科学版), 10, 24-30.
[4] Nahiyan, A.S.M. and Matsubara, Y. (2012) Tolerance to Fusarium root rot and changes in antioxidative ability in mycorrhizal asparagus plants. HortScience, 47, 356-360.
[5] 唐许, 刘代军, 涂波, 等 (2013) 菌根桑的促生效应及耐旱生理生化机制分析. 西南大学学报(自然科学版), 8, 19-26.
[6] Kashyap, S. and Sharma, S. (2006) In vitro selection of salt tolerant Morus alba and its field performance with bioinoculants. Horticultural Science—Prague, 33, 77-86.
[7] de Andrade, S.A.L., da Silveira, A.P.D., Jorge, R.A., et al. (2008) Cadmium accumulation in sunflower plants influenced by arbuscular mycorrhiza. International Journal of Phytoremediation, 10, 1-13.
[8] Jackson, L.E., Burger, M. and Cavagnaro, T.R. (2008) Roots, nitrogen transformations, and ecosystem services. Annual Review of Plant Biology, 59, 341-363.
[9] Tanaka, Y. and Yano, K. (2005) Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant, Cell & Environment, 28, 1247-1254.
[10] 刘润进, 李晓林 (2000) 丛枝菌根及其应用. 科学出版社, 北京.
[11] Haines, B.L. and Best, G.R. (1976) Glomus mosseae, endomycorrhizal with Liquidambar styraciflua L. seedlings retards NO3, NO2 and NH4 nitrogen loss from a temperate forest soil. Plant and Soil, 45, 257-261.
[12] Ames, R.N., Reid, C.P.P., Porter, L.K. and Cambardella, C. (1983) Hyphal uptake and transport of nitrogen from two 15N-labelled sources by Glomus mosseae, a vesicular-arbuscular mycorrhizal fungus. New Phytologist, 95, 381-396.
[13] Hawkins, H.J. and George, E. (2001) Reduced 15N-nitrogen transport through arbuscular mycorrhizal hyphae to Triticum aestivum L. supplied with ammonium vs. nitrate nutrition. Annals of Botany, 87, 303-311.
[14] 李侠, 张俊伶 (2009) 丛枝菌根根外菌丝对铵态氮和硝态氮吸收能力的比较. 植物营养与肥料学报, 3, 683-689.
[15] 李侠, 张俊伶 (2007) 丛枝菌根根外菌丝对不同形态氮素的吸收能力. 核农学报, 2, 195-200.
[16] Johansen, A., Finlay, R.D. and Olsson, P.Å.L.A. (1996) Nitrogen metabolism of external hyphae of the arbuscular mycorrhizal fungus Glornus intraradices. New Phytologist, 133, 705-712.
[17] Toussaint, J.P., St-Arnaud, M. and Charest, C. (2004) Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith and Ri T-DNA roots of Daucus carota L. in an in vitro compartmented system. Canadian Journal of Microbiology, 50, 251-260.
[18] Cliquet, J.B., Murray, P.J. and Boucaud, J. (1997) Effect of the arbuscular mycorrhizal fungus Glomus fasciculatum on the uptake of amino nitrogen by Lolium perenne. New Phytologist, 137, 345-349.
[19] Leigh, J., Hodge, A. and Fitter, A.H. (2009) Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytologist, 181, 199-207.
[20] Whiteside, M.D., Garcia, M.O. and Treseder, K.K. (2012) Amino acid uptake in arbuscular mycorrhizal plants. PLOS ONE, 7, 1-4.
[21] 金海如, 张萍华, 蒋冬花 (2011) 同位素示踪研究丛枝菌根真菌吸收不同氮素并向寄主植物输运的机理. 土壤学报, 4, 888-892.
[22] Belmondo, S., Fiorilli, V., Pérez-Tienda, J., Ferrol, N., Marmeisse, R. and Lanfranco, L. (2014) A dipeptide transporter from the arbuscular mycorrhizal fungus Rhizophagus irregularis is upregulated in the intraradical phase. Frontiers in Plant Science, 5, 1-11.
[23] Hodge, A., Campbell, C.D. and Fitter, A.H. (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature, 413, 297-299.
[24] Toljander, J.F., Lindahl, B.D., Paul, L.R., Elfstrand, M. and Finlay, R.D. (2007) Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiology Ecology, 61, 295-304.
[25] Nuccio, E.E., Hodge, A., Pett-Ridge, J., Herman, D.J., Weber, P.K. and Firestone, M.K. (2013) An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. Environmental Microbiology, 15, 1870-1881.
[26] Whiteside, M.D., Treseder, K.K. and Atsatt, P.R. (2009) The brighter side of soils: Quantum dots track organic nitrogen through fungi and plants. Ecology, 90, 100-108.
[27] Whiteside, M.D., Digman, M.A., Gratton, E. and Treseder, K.K. (2012) Organic nitrogen uptake by arbuscular mycorrhizal fungi in a boreal forest. Soil Biology and Biochemistry, 55, 7-13.
[28] Titus, J.S. and Kang, S.M. (1982) Nitrogen metabolism, translocation, and recycling in apple trees. Horticultural Reviews, 4, 204-246.
[29] Bago, B., Pfeffer, P. and Shachar-Hill, Y. (2001) Could the urea cycle be translocating nitrogen in the arbuscular mycorrhizal symbiosis? New Phytologist, 149, 4-8.
[30] Govindarajulu, M., Pfeffer, P.E., Jin, H.R., Abubaker, J., Douds, D.D., Allen, J.W., et al. (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature, 435, 819-823.
[31] Jin, H., Pfeffer, P.E., Douds, D.D., Piotrowski, E., Lammers, P.J. and Shachar-Hill, Y. (2005) The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytologist, 168, 687-696.
[32] 金海如, 刘洁, 刘静, 黄晓伟 (2012) 丛枝菌根真菌氮吸收, 运转和传递机理的总述. 中国科学: 生命科学, 5, 355-364.
[33] Bago, B., Pfeffer, P.E., Douds, D.D., Brouillette, J., Bécard, G. and Shachar-Hill, Y. (1999) Carbon metabolism in spores of the arbuscular mycorrhizal fungus Glomus intraradices as revealed by nuclear magnetic resonance spectroscopy. Plant Physiology, 121, 263-272.
[34] Cruz, C., Egsgaard, H., Trujillo, C., Ambus, P., Requena, N., Martins-Loução, M.A. and Jakobsen, I. (2007) Enzymatic evidence for the key role of arginine in nitrogen translocation by arbuscular mycorrhizal fungi. Plant Physiology, 144, 782-792.
[35] 金海如, 蒋湘艳 (2009) AM 真菌氮代谢与运转研究新进展. 菌物学报, 3, 466-471.
[36] Tian, C.J., Kasiborski, B., Koul, R., Lammers, P.J., Bücking, H. and Shachar-Hill, Y. (2010) Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: Gene characterization and the coordination of expression with nitrogen flux. Plant Physiology, 153, 1175-1187.
[37] 金海如 (2008) 丛枝菌根菌丝精氨酸双向运转并分解为鸟氨酸. 中国科学: C 辑, 11, 1048-1055.
[38] Jin, H.R. (2009) Arginine bi-directional translocation and breakdown into ornithine along the arbuscular mycorrhizal mycelium. Science in China Series C: Life Sciences, 52, 381-389.
[39] Chalot, M., Blaudez, D. and Brun, A. (2006) Ammonia: A candidate for nitrogen transfer at the mycorrhizal interface. Trends in Plant Science, 11, 263-266.
[40] Pumplin, N. and Harrison, M.J. (2009) Live-cell imaging reveals periarbuscular membrane domains and organelle location in Medicago truncatula roots during arbuscular mycorrhizal symbiosis. Plant physiology, 151, 809-819.
[41] López-Pedrosa, A., González-Guerrero, M., Valderas, A., Azcón-Aguilar, C. and Ferrol, N. (2006) GintAMT1 encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus intraradices. Fungal Genetics and Biology, 43, 102-110.
[42] Pérez-Tienda, J., Testillano, P.S., Balestrini, R., Fiorilli, V., Azcón-Aguilar, C. and Ferrol, N. (2001) GintAMT2, a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus Glomus intraradices. Fungal Genetics and Biology, 48, 1044-1055.
[43] Pérez-Tienda, J., Corrêa, A., Azcón-Aguilar, C. and Ferrol, N. (2014) Transcriptional regulation of host NH4+ transporters and GS/GOGAT pathway in arbuscular mycorrhizal rice roots. Plant Physiology and Biochemistry, 75, 1-8.
[44] Cappellazzo, G., Lanfranco, L., Fitz, M., Wipf, D. and Bonfante, P. (2008) Characterization of an amino acid permease from the endomycorrhizal fungus Glomus mosseae. Plant Physiology, 147, 429-437.
[45] 田萌萌 (2011) 丛枝菌根真菌吸收同化外源氮产生精氨酸的研究. 硕士论文, 浙江师范大学, 浙江.
[46] Mohamed, A.A., Eweda, W.E.E., Heggo, A.M. and Hassan, E.A. (2014) Effect of dual inoculation with arbuscular mycorrhizal fungi and sulphur-oxidising bacteria on onion (Allium cepa L.) and maize (Zea mays L.) grown in sandy soil under green house conditions. Annals of Agricultural Sciences, 59, 109-118.
[47] 蔡宣梅, 张秋芳, 郑伟文 (2004) VA 菌根菌与重氮营养醋杆菌双接种对超甜玉米生长的影响. 福建农业学报, 3, 125-159.
[48] Tian, C.J., He, X.Y., Zhong, Y. and Chen, J.K. (2002) Effects of VA mycorrhizae and Frankia dual inoculation on growth and nitrogen fixation of Hippophae tibetana. Forest Ecology and Management, 170, 307-312.
[49] Ames, R.N. (1989) Mycorrhiza development in onion in response to inoculation with chitin-decomposing actinomycetes. New Phytologist, 112, 423-427.
[50] Krishna, K., Balakrishna, A. and Bagyarajf, D. (1982) Interaction between a vesicular-arbuscular mycorrhizal fungus and Streptomyces cinnamomeous and their effects on finger millet. New Phytologist, 92, 401-405.
[51] Hawkins, H.J., Johansen, A. and George, E. (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant and Soil, 226, 275-285.
[52] 刘洁 (2012) 不同因素对丛枝菌根真菌吸收同化外源氮产生精氨酸的影响. 硕士论文, 浙江师范大学, 浙江.
[53] Barrett, G., Campbell, C.D. and Hodge, A. (2014) The direct response of the external mycelium of arbuscular mycorrhizal fungi to temperature and the implications for nutrient transfer. Soil Biology & Biochemistry, 78, 109-117.
[54] Bender, S.F., Conen, F. and Heijden, M.G.A.V. (2015) Mycorrhizal effects on nutrient cycling, nutrient leaching and N2O production in experimental grassland. Soil Biology & Biochemistry, 80, 283-292.
[55] Tatsuhiro, E. and Sally, E. (2001) Differentiation of polyphosphate metabolism between the extra- and intraradical hyphae of arbuscular mycorrhizal fungi. New Phytologist, 149, 555-563.
[56] Ding, X.D., Zhang, L., Zhang, S.R. and Feng, G. (2014) Phytate utilization of maize mediated by different nitrogen forms in a plant-arbuscular mycorrhizal fungus-phosphate-solubilizing bacterium system. Journal of Plant Interactions, 9, 514-520.
[57] Nasto, M.K., Alvarez-Clare, S., Lekberg, Y., Sullivan, B.W., Townsend, A.R. and Cleveland, C.C. (2014) Interactions among nitrogen fixation and soil phosphorus acquisition strategies in lowland tropical rain forests. Ecology letters, 17, 1282-1289.
[58] 王晓伟, 左楠楠, 金海如 (2013) 不同磷浓度对丛枝菌根真菌吸收同化外源氮能力的影响. 微生物学杂志, 6, 60- 64.
[59] Cheng, L., Booker, F.L., Tu, C., Burkey, K.O., Zhou, L., Shew, H.D., et al. (2012) Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science, 337, 1084-1087.
[60] Bécard, G. and Piché, Y. (1989) Fungal growth stimulation by CO2 and root exudates in vesicular-arbuscular mycorrhizal symbiosis. Applied and Environmental Microbiology, 55, 2320-2325.
[61] Pfeffer, P.E., Douds, D.D., Bécard, G. and Shachar-Hill, Y. (1999) Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiology, 120, 587-598.
[62] Walder, F., Niemann, H., Natarajan, M., Lehmann, M.F., Boller, T. and Wiemken, A. (2012) Mycorrhizal networks: Common goods of plants shared under unequal terms of trade. Plant physiology, 159, 789-797.
[63] Fellbaum, C.R., Gachomo, E.W., Beesetty, Y., Choudhari, S., Strahan, G.D., Pfeffer, P.E., et al. (2012) Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences, 109, 2666-2671.
[64] Fellbaum, C.R., Mensah, J.A., Cloos, A.J., Strahan, G.E., Pfeffer, P.E., Kiers, E.T. and Bücking, H. (2014) Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytologist, 203, 646-656.
[65] Olsson, P.A., Burleigh, S.H. and Van Aarle, I.M. (2005) The influence of external nitrogen on carbon allocation to Glomus intraradices in monoxenic arbuscular mycorrhiza. New Phytologist, 168, 677-686.
[66] Brzostek, E.R., Fisher, J.B. and Phillips, R.P. (2014) Modeling the carbon cost of plant nitrogen acquisition: Mycorrhizal trade-offs and multipath resistance uptake improve predictions of retranslocation. Journal of Geophysical Research: Biogeosciences, 119, 1684-1697.
[67] 王婷婷, 王仁刚, 李咏梅, 王昌江, 任学良, 王云鹏, 郭坚华 (2014) 贵州烟草根围 AM 真菌多样性的初步研究. 菌物学报, 1, 143-151.
[68] Pivato, B., Mazurier, S., Lemanceau, P., Siblot, S., Berta, G., Mougel, C. and van Tuinen, D. (2007) Medicago species affect the community composition of arbuscular mycorrhizal fungi associated with roots. New Phytologist, 176, 197- 210.
[69] 冯固, 张福锁, 李晓林, 张俊伶, 盖京苹 (2010) 丛枝菌根真菌在农业生产中的作用与调控. 土壤学报, 5, 995- 1004.
[70] 肖同建, 杨庆松, 冉炜, 徐国华, 沈其荣 (2010) 接种菌根真菌的旱作水稻-绿豆间作系统养分利用研究. 中国农业科学, 4, 753-760.
[71] 艾为党, 李晓林 (2000) 玉米, 花生根间丝桥对氮传递的研究. 作物学报, 4, 473-481.
[72] He, X.H., Critchley, C. and Bledsoe, C. (2003) Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Critical Reviews in Plant Sciences, 22, 531-567.
[73] Johansen, A. and Jensen, E.S. (1996) Transfer of N and P from intact or decomposing roots of pea to barley interconnected by an arbuscular mycorrhizal fungus. Soil Biology and Biochemistry, 28, 73-81.
[74] 李晓林, 冯固 (2001) 丛枝菌根生态生理. 华文出版社, 北京.