Fe3O4-FeO基熔铁催化剂费–托合成反应性能
Performances of Fe3O4-FeO Based Fused Iron Catalysts for Fischer-Tropsch Synthesis
DOI: 10.12677/CCE.2015.32002, PDF, HTML, XML, 下载: 2,644  浏览: 7,250  科研立项经费支持
作者: 杨霞珍, 夏 航, 霍 超, 刘化章:浙江工业大学工业催化研究所,浙江 杭州
关键词: 低温固定床熔铁催化剂费–托合成Low Temperature Fixed-Bed Reactor Fused Iron Catalyst Fischer-Tropsch Synthesis
摘要: 在固定床反应器中进行了反应温度、压力、空速、氢碳比、粒度对Fe3O4-FeO基(nFe2+/nFe3+ = 0.89 - 1.5)熔铁催化剂费–托合成反应性能的影响研究。实验结果表明,该熔铁催化剂低温活性良好,在493 K时,CO转化率51.93%。通过降低氢碳比、温度或空速,或升高反应压力,可以减小甲烷选择性,特别是温度的影响作用结果明显,由5.80%降至2.99%。催化剂粒度小于0.1 mm消除了在固定床中的内扩散影响。反应条件对Fe3O4-FeO基熔铁催化剂F-T合成反应性能影响规律和其它铁基催化剂F-T合成类似。
Abstract: The effects of reaction temperature, pressure, space velocity, H2/CO ratio and particle size on per-formances of Fe3O4-FeO based fused iron catalysts for Fischer-Tropsch synthesis have been inves-tigated in a fixed-bed reactor. The results show that, the activity of the catalysts was well at low temperature. Conversion of carbon monoxide was 51.93% at 493 K. The selectivity of methane could be decreased by lowering the H2/CO ratio, temperature or space velocity, or increasing the pressure. Especially, the selectivity of methane was decreased from 5.80% to 2.99% by reducing temperature. The inner diffusion was eliminated when the particle size was less than 0.1 mm in the fixed-bed reactor. The effects of reaction conditions on Fe3O4-FeO based fused iron catalysts for Fischer-Tropsch synthesis were found to be similar to the other iron catalysts for Fischer- Tropsch synthesis. 
文章引用:杨霞珍, 夏航, 霍超, 刘化章. Fe3O4-FeO基熔铁催化剂费–托合成反应性能[J]. 清洁煤与能源, 2015, 3(2): 7-13. http://dx.doi.org/10.12677/CCE.2015.32002

参考文献

[1] Eilers, J., Posthuma, S.A. and Sie, T. (1990) The shell middle distillate synthesis process (SMDS). Catalysis. Letter, 7, 253-269.
[2] Anderson, R.B., Sekigman Schulz, J.F. and Elliot, M.A. (1952) Fischer-Tropsch synthesis. Some im-portant variables of the synthesis on iron catalysts. Industrial Engineering Chemistry, 44, 391-397.
[3] Dictor, R.A. and Bell, A.T. (1986) Fischer-Tropsch synthesis over reduced and unreduced iron oxide catalysts. Journal of Catalysis, 97, 121-136.
[4] Krishna K. R. and Bell, A.T. (1993) Estimates of the Rate Coefficients for Chain Initiation, Propa-gation, and Termination during Fischer-Tropsch Synthesis over Ru/TiO2. Journal of Catalysis, 139, 104-118.
[5] 张志新, 唐曙光, 林恒生 (1992) CO+H_2两段法(MFT)合成汽油 Ⅱ.Ⅰ段催化剂预处理及工艺参数考察. 天然气化工, 2, 7-11.
[6] 刘颖, 杨骏, 白亮, 等 (2003) Fe-Mn催化剂对F-T合成反应的催化性能I. 初期反应性能. 催化学报, 4, 299-304.
[7] Dry, M.E. (1981) The Fischer-Tropsch synthesis. In: Anderson, J.R. and Boudart, M., Eds., Catalysis Science and Technology, Springer-Verlag, Berlin, Vol. 1, 159-255.
[8] Ruud, S. and Espinoza, R.L. (1989) Secondary reactions of primary products of the fischer-tropsch synthesis P: Part III. The role of butene. Journal of Molecular Catalysis, 54, 119-130.
[9] William, H.Z., Joseph, A.R. and Dragomir, B.B. (1989) Effect of particle size on the activity of a fused iron Fischer- Tropsch catalyst. Industrial Engineering Chemistry Research, 28, 406-413
[10] 李作骏 (1990) 多相催化反应动力学基础. 北京大学出版社, 北京.