低氧高钛铁应用及研究进展
Research Advance and Application of High Titanniumferrous with Low Oxygen
DOI: 10.12677/MEng.2015.23017, PDF, HTML, XML,  被引量 下载: 2,531  浏览: 11,449  国家自然科学基金支持
作者: 豆志河, 范世刚, 程 楚, 张廷安, 史冠勇:多金属共生矿生态化冶金教育部重点实验室东北大学,辽宁 沈阳
关键词: 低氧高钛铁低残留高钛铁氟盐铝热还原分步深度还原脱氧精炼High Titanium Ferroalloy with Low Oxygen High Titanium Ferroalloy with Low Residual Fluoride Salt Aluminothermic Reduction Step-by-Step Reduction Deoxidation Refining
摘要: 近年来随着特种不锈钢、管线钢、汽车用钢、海洋钢需求量急剧增加,高钛铁合金的市场需求也越来越大,对高钛铁中氧等杂质残留量也要求越来越苛刻。另外,随着喂丝精炼技术的普及,对低氧低残留高钛铁包芯线的需求量越来越大。我国成功开发出氟盐铝热法还原制备低氧低残留高钛铁超细粉体,制备出氧含量<2.0%,铝含量<4.0%及硅含量<0.5%,钒、锰、碳、硫、磷等杂质元素含量几乎为零的高钛铁超细粉体,并在筹建万吨级规模的生产线。同时我国还开发出分步深度还原制备低氧低残留高钛铁新工艺,制备出氧含量0.23%,铝含量1.5%优质高钛铁,并在进行放大试验。
Abstract: With the increasing needs of special stainless steel, pipeline steel, automotive steel, and marine steel in recent years, the high titanium ferroalloy is becoming a great demand in the market, and the requirement of oxygen content in the high titanium ferroalloy is demanding. In addition, with the popularity of feeding refining technology, the need of high titanium ferroalloy core with low oxygen residual is becoming greater. China is developing a method of preparing ultra-fine high ti-tanium iron powder with low oxygen residual by fluoride salt aluminothermic reduction. The content of oxygen, aluminum, and silica is less than 2.0%, 4.0%, and 0.5%, respectively, and the content of impurities such as S, V, Mn, C is almost zero. And a ten-thousand-ton production line will be under construction. At the same time China is also developing a new technology of preparing high titanium ferroalloy with low oxygen residual by step-by-step reduction, of which the oxygen content in the high titanium ferroalloy prepared is 0.23% and aluminum content is 1.5%, and enlarging test is also being carried out.
文章引用:豆志河, 范世刚, 程楚, 张廷安, 史冠勇. 低氧高钛铁应用及研究进展[J]. 冶金工程, 2015, 2(3): 107-121. http://dx.doi.org/10.12677/MEng.2015.23017

参考文献

[1] 江旭 (2012) 铝热法高钛铁制备及其对钢液脱氧性能的影响. 硕士论文, 东北大学, 沈阳.
[2] 齐江华 (2009) 高级别管线钢钛脱氧解析及针状铁素体形核机理研究. 硕士论文, 武汉科技大学, 武汉.
[3] Benjamin, J.S. (1970) Dispersion strengthened super-alloys by mechanical alloying. Metallurgical Transactions, 1, 2943-295.
[4] 邓国珠 (2005) 钛冶金工业中的三个高端产品. 钢铁钒钛, 12, 60-63.
[5] 吴玉彬, 巩红涛, 吴荷生, 等 (2011) 包芯线生产技术的现状与发展. 应用科技, 7, 56-61.
[6] 关跃 (2014) 铝热还原制备钛铁的热力学研究. 硕士论文, 东北大学, 沈阳.
[7] Since 2005 titanium prices and price charts. http://www.infomine.com/investment/metal-prices/ferro-titanium/1-year/
[8] 汪汉臣 (1996) 用残钛料真空试炼高钛钛铁. 铁合金, 1, 36-38.
[9] 夏文堂, 张启修 (2004) 有衬电渣炉冶炼高品位钛铁的研究. 铁合金, 4, 36-39.
[10] 张廷安 (2009) 基于铝热还原–真空感应熔炼制备高品质高钛铁的方法. 中国专利: ZL200710011614.X.
[11] 夏冬冬, 吴晓东 (2008) 铝热法冶炼高钛铁合金的试验研究. 上海金属, 2, 28-31.
[12] 刘涛涛 (2011) 利用金红石制备高钛铁的研究. 硕士论文, 东北大学, 沈阳.
[13] 高腾跃 (2012) 金属热还原——二次精炼制备高钛铁. 硕士论文, 东北大学, 沈阳.
[14] Jones, R.T., Barcza, N.A. and Curr, T.R. (1993) Plasma developments in Africa. Journal of Alloys and Compounds, 8, 2819.
[15] Paton, B.E., Medovar, B.L. and Benz, M.G. (1999) ESR for titanium: Yesterday, today, tomorrow. Proceedings of the Ninth World Conference on Titanium, Saint-Petersburg, 7-11 June 1999, 1385-1398.
[16] 张廷安 (2010) 基于铝热还原制备高品质高钛铁合金的方法及装置. 中国专利: ZL200810230203.4.
[17] 张廷安 (2012) 一种分步金属热还原制备高钛铁的方法. 中国专利: ZL201010514572.3.
[18] 张廷安 (2014) 一种基于铝热还原–喷吹深度还原直接制备金属钛的方法. 中国专利: 2014103459052.
[19] 豆志河 (2014) 一种铝热还原–喷吹深度还原制备低氧、低铝钛铁合金的方法. 中国专利: 2014103459014.
[20] 张廷安 (2014) 一种铝热还原–喷吹深度还原制备钛铝钒合金的方法. 中国专利: 2014103457131.
[21] 陈学敏 (2014) 以氟钛酸钾为中间原料生产海绵钛并同步产出钾冰晶石的循环制备方法. 中国专利: ZL201210040659.0.
[22] 李贞顺 (2010) 360MPa级船板钢组织与性能研究. 博士论文, 山东大学, 济南.
[23] 高龙永 (2012) 济钢船板钢表面裂纹缺陷成因及控制措施研究. 博士论文, 重庆大学, 重庆.
[24] 张铁军, 杨静, 姜海荣 (2009) 用喂线法控制加钛生产含钛汽车齿轮钢技术. 烟台大学学报(自然科学与工程版), 1, 76-79.