神经系统表观遗传进展
Epigenetics Advances in the Nervous System
DOI: 10.12677/QRB.2015.21001, PDF, HTML, XML, 下载: 3,040  浏览: 13,868  国家自然科学基金支持
作者: 王 卓*, 戴甲培*:中南民族大学武汉神经科学和神经工程研究所,中南民族大学生命科学学院;覃 瑞, 余光辉*:中南民族大学生命科学学院,南方少数民族地区资源保护综合利用联合工程中心,武陵山区特色资源植物种质保护与利用湖北省重点实验室
关键词: 表观遗传神经系统神经系统功能与疾病跨代遗传Epigenetics Central Nervous System CNS Functions and Disorders Transgenerational Inherience
摘要: 神经表观遗传学是一门新兴的学科,主要研究中枢神经系统的表观遗传机制。最新研究发现,获得性行为、中枢神经系统功能紊乱、神经可塑性、神经毒性和药物成瘾以及神经系统疾病的发生等现象都涉及到相关的表观遗传机制。人类神经系统发育和功能也与表观遗传机制有关,并且表现出跨代遗传的表观遗传效应。本文综述了神经表观遗传学研究方面的进展和相应的机制。
Abstract: Neuroepigenetics is a new emerging field, mainly focusing on epigenetic mechanism study of the central nervous system (CNS). New discoveries show that the CNS-related behaviors, CNS disorders, neural plasticity, neurotoxicity, drug addiction and other neurological disorders are related to the underlying epigenetic mechanisms. Moreover, the development and the function of the human nervous system are also linked with epigenetic mechanisms, exhibiting transgenerational epigenetic effects. Advances in the study of epigenetic mechanisms in CNS are reviewed in this contribution.
文章引用:王卓, 覃瑞, 戴甲培, 余光辉. 神经系统表观遗传进展[J]. 千人·生物, 2015, 2(1): 1-9. http://dx.doi.org/10.12677/QRB.2015.21001

参考文献

[1] Wu, C. and Morris, J.R. (2001) Genes, genetics, and epigenetics: A correspondence. Science, 293, 1103-1105.
http://dx.doi.org/10.1126/science.293.5532.1103
[2] Day, J.J. and Sweatt, J.D. (2010) DNA methylation and memory formation. Nature Neuroscience, 13, 1319-1323.
http://dx.doi.org/10.1038/nn.2666
[3] Gaydos, L.J., Wang, W. and Strome, S. (2014) Gene repression. H3K27me and PRC2 transmit a memory of repression across generations and during development. Science, 345, 1515-1518.
http://dx.doi.org/10.1126/science.1255023
[4] Sweatt, J.D. (2013) The emerging field of neuroepigenetics. Neuron, 80, 624-632.
http://dx.doi.org/10.1016/j.neuron.2013.10.023
[5] Crick, F. (1984) Memory and molecular turnover. Nature, 312, 101.
http://dx.doi.org/10.1038/312101a0
[6] Lisman, J.E. (1985) A mechanism for memory storage insensitive to molecular turnover: A bistable autophosphorylating kinase. Proceedings of the National Academy of Sciences of the United States of America, 82, 3055-3057.
http://dx.doi.org/10.1073/pnas.82.9.3055
[7] Santos, K.F., Mazzola, T.N. and Carvalho, H.F. (2005) The prima donna of epigenetics: the regulation of gene expression by DNA methylation. Brazilian Journal of Medical and Biological Research, 38, 1531-1541.
http://dx.doi.org/10.1590/S0100-879X2005001000010
[8] Bird, A. (2002) DNA methylation patterns and epigenetic memory. Genes & Development, 16, 6-21.
http://dx.doi.org/10.1101/gad.947102
[9] Holliday, R. (2006) Epigenetics: A historical overview. Epigenetics, 1, 76-80.
http://dx.doi.org/10.4161/epi.1.2.2762
[10] Guo, J.U., Su, Y., Zhong, C., Ming, G.L. and Song, H. (2011) Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell, 145, 423-434.
http://dx.doi.org/10.1016/j.cell.2011.03.022
[11] Jenuwein, T. and Allis, C.D. (2001) Translating the histone code. Science, 293, 1074-1080.
http://dx.doi.org/10.1126/science.1063127
[12] Borrelli, E., Nestler, E.J., Allis, C.D. and Sassone-Corsi, P. (2008) Decoding the epigenetic language of neuronal plasticity. Neuron, 60, 961-974.
http://dx.doi.org/10.1016/j.neuron.2008.10.012
[13] Lee, J.S., Smith, E. and Shilatifard, A. (2010) The language of histone crosstalk. Cell, 142, 682-685.
http://dx.doi.org/10.1016/j.cell.2010.08.011
[14] Wang, Z., Zang, C., Rosenfeld, J.A., Schones, D.E., Barski, A., Cuddapah, S., Cui, K., Roh, T.Y., Peng, W., Zhang, M.Q. and Zhao, K. (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nature Genetics, 40, 897-903.
http://dx.doi.org/10.1038/ng.154
[15] Wood, M.A., Hawk, J.D. and Abel, T. (2006) Combinatorial chromatin modifications and memory storage: A code for memory? Learning & Memory, 13, 241-244.
http://dx.doi.org/10.1101/lm.278206
[16] Sun, A.X., Crabtree, G.R. and Yoo, A.S. (2013) MicroRNAs: Regulators of neuronal fate. Current Opinion in Cell Biology, 25, 215-221.
http://dx.doi.org/10.1016/j.ceb.2012.12.007
[17] Tardito, D., Mallei, A. and Popoli, M. (2013) Lost in translation. New unexplored avenues for neuropsychopharmacology: Epigenetics and microRNAs. Expert Opinion on Investigational Drugs, 22, 217-233.
http://dx.doi.org/10.1517/13543784.2013.749237
[18] Ronan, J.L., Wu, W. and Crabtree, G.R. (2013) From neural development to cognition: Unexpected roles for chromatin. Nature Reviews Genetics, 14, 347-359.
http://dx.doi.org/10.1038/nrg3413
[19] Ballas, N. and Mandel, G. (2005) The many faces of REST oversee epigenetic programming of neuronal genes. Current Opinion in Neurobiology, 15, 500-506.
http://dx.doi.org/10.1016/j.conb.2005.08.015
[20] Muotri, A.R. and Gage, F.H. (2006) Generation of neuronal variability and complexity. Nature, 441, 1087-1093.
http://dx.doi.org/10.1038/nature04959
[21] Bailey, C.H., Kandel, E.R. and Si, K. (2004) The persistence of long-term memory: A molecular approach to self- sustaining changes in learning-induced synaptic growth. Neuron, 44, 49-57.
http://dx.doi.org/10.1016/j.neuron.2004.09.017
[22] Si, K., Lindquist, S. and Kandel, E. (2004) A possible epigenetic mechanism for the persistence of memory. Cold Spring Harbor Symposia on Quantitative Biology, 69, 497-498.
http://dx.doi.org/10.1101/sqb.2004.69.497
[23] Sultan, F.A. and Day, J.J. (2011) Epigenetic mechanisms in memory and synaptic function. Epigenomics, 3, 157-181.
http://dx.doi.org/10.2217/epi.11.6
[24] Feng, J., Zhou, Y., Campbell, S.L., Le, T., Li, E., Sweatt, J.D., Silva, A.J. and Fan, G.P. (2010) Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nature Neuroscience, 13, 423- 430.
http://dx.doi.org/10.1038/nn.2514
[25] Lubin, F.D., Roth, T.L. and Sweatt, J.D. (2008) Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. Journal of Neuroscience, 28, 10576-10586.
http://dx.doi.org/10.1523/JNEUROSCI.1786-08.2008
[26] Miller, C.A. and Sweatt, J.D. (2007) Covalent modification of DNA regulates memory formation. Neuron, 53, 857-869.
http://dx.doi.org/10.1016/j.neuron.2007.02.022
[27] Monsey, M.S., Ota, K.T., Akingbade, I.F., Hong, E.S. and Schafe, G.E. (2011) Epigenetic alterations are critical for fear memory consolidation and synaptic plasticity in the lateral amygdala. PLoS ONE, 6, e19958.
http://dx.doi.org/10.1371/journal.pone.0019958
[28] Guo, J.U., Ma, D.K., Mo, H., Ball, M.P., Jang, M.H., Bonaguidi, M.A., Balazer, J.A., Eaves, H.L., Xie, B., Ford, E., Zhang, K., Ming, G.L., Gao, Y. and Song, H. (2011) Neuronal activity modifies the DNA methylation landscape in the adult brain. Nature Neuroscience, 14, 1345-1351.
http://dx.doi.org/10.1038/nn.2900
[29] Ito, S., D’Alessio, A.C., Taranova, O.V., Hong, K., Sowers, L.C. and Zhang, Y. (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature, 466, 1129-1133.
http://dx.doi.org/10.1038/nature09303
[30] Kriaucionis, S. and Heintz, N. (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science, 324, 929-930.
http://dx.doi.org/10.1126/science.1169786
[31] Tahiliani, M., Koh, K.P., Shen, Y., Pastor, W.A., Bandukwala, H., Brudno, Y., Agarwal, S., Iyer, L.M., Liu, D.R., Aravind, L. and Rao, A. (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 324, 930-935.
http://dx.doi.org/10.1126/science.1170116
[32] Ito, S., Shen, L., Dai, Q., Wu, S.C., Collins, L.B., Swenberg, J.A., He, C. and Zhang, Y. (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science, 333, 1300-1303.
http://dx.doi.org/10.1126/science.1210597
[33] Kaas, G.A., Zhong, C., Eason, D.E., Ross, D.L., Vachhani, R.V., Ming, G.L., King, J.R., Song, H. and Sweatt, J.D. (2013) TET1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation. Neuron, 79, 1086-1093.
http://dx.doi.org/10.1016/j.neuron.2013.08.032
[34] Rudenko, A., Dawlaty, M.M., Seo, J., Cheng, A.W., Meng, J., Le, T., Faull, K.F., Jaenisch, R. and Tsai, L.H. (2013) Tet1 is critical for neuronal activity-regulated gene expression and memory extinction. Neuron, 79, 1109-1122.
http://dx.doi.org/10.1016/j.neuron.2013.08.003
[35] Petronis, A. (2010) Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature, 465, 721-727.
http://dx.doi.org/10.1038/nature09230
[36] 李婷, 李华芳, 禹顺英 (2012) Reelin在精神疾病中的研究进展. 精神医学杂志, 1, 75-77.
[37] Ruzicka, W.B., Zhubi, A., Veldic, M., Grayson, D.R., Costa, E. and Guidotti, A. (2007) Selective epigenetic alteration of layer I GABAergic neurons isolated from prefrontal cortex of schizophrenia patients using laser-assisted microdissection. Molecular Psychiatry, 12, 385-397.
http://dx.doi.org/10.1038/sj.mp.4001954
[38] Costa, E., Grayson, D.R. and Guidotti, A. (2003) Epigenetic downregulation of GABAergic function in schizophrenia: Potential for pharmacological intervention? Molecular Interventions, 3, 220-229.
http://dx.doi.org/10.1124/mi.3.4.220
[39] Tsankova, N., Renthal, W., Kumar, A. and Nestler, E.J. (2007) Epigenetic regulation in psychiatric disorders. Nature Reviews Neuroscience, 8, 355-367.
http://dx.doi.org/10.1038/nrn2132
[40] Oliveira, A.M., Hemstedt, T.J. and Bading, H. (2012) Rescue of aging-associated decline in Dnmt3a2 expression restores cognitive abilities. Nature Neuroscience, 15, 1111-1113.
http://dx.doi.org/10.1038/nn.3151
[41] Weaver, I.C., Cervoni, N., Champagne, F.A., D’Alessio, A.C., Sharma, S., Seckl, J.R., Dymov, S., Szyf, M. and Meaney, M.J. (2004) Epigenetic programming by maternal behavior. Nature Neuroscience, 7, 847-854.
http://dx.doi.org/10.1038/nn1276
[42] Reichardt, H.M. (2000) Mice with an increased glucocorticoid receptor gene dosage show enhanced resistance to stress and endotoxic shock. Molecular and Cellular Biology, 20, 9009-9017.
http://dx.doi.org/10.1128/MCB.20.23.9009-9017.2000
[43] Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freedman, A., Sharma, S., Pearson, D., Plotsky, P.M. and Meaney, M.J. (1997) Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science, 277, 1659-1662.
http://dx.doi.org/10.1126/science.277.5332.1659
[44] McGowan, P.O., Sasaki, A., D’Alessio, A.C., Dymov, S., Labonte, B., Szyf, M., Turecki, G. and Meaney, M.J. (2009) Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience, 12, 342-348.
http://dx.doi.org/10.1038/nn.2270
[45] Bohacek, J., Gapp, K., Saab, B.J. and Mansuy, I.M. (2013) Transgenerational epigenetic effects on brain functions. Biological Psychiatry, 73, 313-320.
http://dx.doi.org/10.1016/j.biopsych.2012.08.019
[46] Kaminen-Ahola, N.J., Ahola, A.I. and Whitelaw, E. (2011) Epigenetic inheritance: Both mitotic and meiotic. Niculescu/Nutrition in Epigenetics, 1, 87-103.
http://dx.doi.org/10.1002/9780470959824.ch5
[47] Lister, R., Mukamel, E.A., Nery, J.R., Urich, M., Puddifoot, C.A., Johnson, N.D., Lucero, J., Huang, Y., Dwork, A.J., Schultz, M.D., Yu, M., Tonti-Filippini, J., Heyn, H., Hu, S., Wu, J.C., Rao, A., Esteller, M., He, C., Haghighi, F.G., Sejnowski, T.J., Behrens, M.M. and Ecker, J.R. (2013) Global epigenomic reconfiguration during mammalian brain development. Science, 341, Article ID: 1237905.
http://dx.doi.org/10.1126/science.1237905