类胡萝卜素对前脂肪细胞3T3-L1增殖和分化的影响
Effects of Carotenoids on 3T3-L1 Preadipocyte Viability and Differentiation
DOI: 10.12677/BIPHY.2015.32005, PDF, HTML, XML, 下载: 6,402  浏览: 21,462 
作者: 高润草, 吕 品, 赵文恩:郑州大学化工与能源学院,河南 郑州;阮宝玉:岘港食品工业学院,岘港
关键词: 类胡萝卜素3T3-L1前脂肪细胞分化PPARγCarotenoids 3T3-L1 Preadipocytes Differentiation PPARγ
摘要: 本文通过评估胭脂树橙、β-胡萝卜素和番茄红素对3T3-L1前脂肪细胞活力和分化的影响,探究其可能作用机制。以四甲基偶氮唑盐(MTT)法检测细胞活力,用油红O染色和染色比色法分析脂肪细胞的分化程度,West blotting检测过氧化物酶体增殖物激活受体gamma (PPARγ)的表达水平。结果表明,胭脂树橙、β-胡萝卜素和番茄红素明显降低3T3-L1细胞活力,抑制其分化,下调PPARγ的表达水平。β-胡萝卜素比胭脂树橙和番茄红素表现出更强的抑制作用。结果提示胭脂树橙、β-胡萝卜素和番茄红素经由PPARγ下调抑制3T3-L1细胞分化。
Abstract: The aim of the study was to assess the suppressive effects of bixin, β-carotene and lycopene on the differentiation of 3T3-L1 preadipocytes. The viability of 3T3-L1 cells were tested by MTT and their differentiation was evaluated by Oil red O staining method. The expression levels of peroxisome proliferator-activated receptor gamma (PPARγ) were measured by West blotting. The results showed that bixin, β-carotene and lycopene significantly reduced the viability and suppressed the differentiation of 3T3-L1 preadipocytes, respectively. β-Carotene had stronger suppressive effects than bixin and lycopene on adipocyte differentiation in 3T3-L1 cells. Bixin, β-carotene and lycopene down-regulated PPARγ expression. These results suggest that bixin, β-carotene and lycopene inhibit the adipocyte differentiation of 3T3-L1 cells through down-regulation of PPARγ.
文章引用:高润草, 阮宝玉, 吕品, 赵文恩. 类胡萝卜素对前脂肪细胞3T3-L1增殖和分化的影响[J]. 生物物理学, 2015, 3(2): 49-57. http://dx.doi.org/10.12677/BIPHY.2015.32005

参考文献

[1] Wu, Y. (2002) Obesity: An epidemic must be paid attention to. Chinese Journal of Epidemiology, 23, 3-4.
[2] Rosen, E.D. and MacDougald, O.A. (2006) Adipocyte differentiation from the inside out. Nature Reviews Molecular Cell Biology, 7, 885-896.
http://dx.doi.org/10.1038/nrm2066
[3] Mueller, E. (2014) Understanding the variegation of fat: Novel regulators of adipocyte differentiation and fat tissue biology. Biochimica et Biophysica Acta, 1842, 352-357.
[4] Lobo, G.P., Amengua, J., Li, H.N.M., Golczak, M., Bonet, M.L., Palczewski, K. and von Lintig, J. (2010)β,β-Caro- tene decreases peroxisome proliferator receptor gamma activity and reduces lipid storage capacity of adipocytes in a β,β-carotene oxygenase 1-dependent manner. Journal of Biological Chemistry, 285, 27891-27899.
http://dx.doi.org/10.1074/jbc.M110.132571
[5] Amengual, J., Gouranton, E., van Helden, Y.G.J., et al. (2011) Beta-Carotene reduces body adiposity of mice via BCMO1. PLoS ONE, 6, e20644.
http://dx.doi.org/10.1371/journal.pone.0020644
[6] Harari, A., Harats, D., Marko, D., et al. (2008) A 9-cis β-Carotene-enriched diet inhibits atherogenesis and fatty liver formation in LDL receptor knockout mice. Journal of Nutrition, 138, 1923-1930.
[7] Kawada, T., Kamei, Y., Fujita, A., Hida, Y., Takahashi, N., Sugimoto, E. and Fushiki, T. (2000) Carotenoids and retinoids as suppressors on adipocyte differentiation via nuclear receptors. Biofactors, 13, 103-109.
http://dx.doi.org/10.1002/biof.5520130117
[8] Shirakura, Y., Takayanagi, K., Mukai, K., Tanabe, H. and Inoue, M. (2011)β-Cryptoxanthin suppresses the adipogenesis of 3T3-L1 cells via RAR activation. Journal of Nutritional Science and Vitaminology, 57, 426-431.
http://dx.doi.org/10.3177/jnsv.57.426
[9] Maeda, H., Hosokawa, M., Sashima, T., Takahashi, N., Kawada, T. and Miyashita, K. (2006) Fucoxanthin and its metabolite, fucoxanthinol, suppress adipocyte differentiation in 3T3-L1 cells. International Journal of Molecular Medicine, 18, 147-152.
[10] Yim, M.J., Hosokawa, M., Mizushina, Y., Yoshida, H., Saito, Y. and Miyashita, K. (2011) Suppressive effects of amarouciaxanthin A on 3T3-L1 adipocyte differentiation through down-regulation of PPARγ and C/EBPα mRNA expression. Journal of Agricultural and Food Chemistry, 59, 1646-1652.
http://dx.doi.org/10.1021/jf103290f
[11] Zaripheh, S., Nara, T.Y., Nakamura, M.T. and Erdman Jr., J.W. (2006) Dietary lycopene downregulates carotenoid 15,15’-monooxygenase and PPAR-γ in selected rat tissues. Journal of Nutrition, 136, 932-938.
[12] Chung, J., Koo, K., Lian, F., Hu, K.Q., Ernst, H. and Wang, X.D. (2012) Apo-10’-lycopenoic acid, a lycopene metabolite, increases sirtuin 1 mRNA and protein levels and decreases hepatic fat accumulation in ob/ob mice. Journal of Nutrition, 142, 405-410.
http://dx.doi.org/10.3945/jn.111.150052
[13] Okada, T., Nakai, M., Maeda, H., Hosokawa, M., Sashima, T. and Miyashita, K. (2008) Suppressive effect of neoxanthin on the differentiation of 3T3-L1 adipose cells. Journal of Oleo Science, 57, 345-351.
http://dx.doi.org/10.5650/jos.57.345
[14] Takahashi, N., Goto, T., Taimatsu, A., Egawa, K., Katoh, S., Kusudo, T., Sakamoto, T., Ohyane, C., Lee, J.Y., Kim, Y.I., Uemura, T., Hirai, S. and Kawada, T. (2009) Bixin regulates mRNA expression involved in adipogenesis and enhances insulin sensitivity in 3T3-L1 adipocytes through PPARγ activation. Biochemical and Biophysical Research Communications, 390, 1372-1376.
http://dx.doi.org/10.1016/j.bbrc.2009.10.162
[15] Maeda, H., Saito, S., Nakamura, N. and Maoka, T. (2013) Paprika pigments attenuate obesity-induced inflammation in 3T3-L1 adipocytes. PPAR Research, 2013, Article ID: 763758.
[16] García-Rojas, P., Antaramian, A., Gonzalez-Davalos, L., Villarroya, F., Shimada, A., Varela-Echavarría, A. and Mora, O. (2010) Induction of peroxisomal proliferator-activated receptor γ and peroxisomal proliferator-activated receptor γ coactivator 1 by unsaturated fatty acids, retinoic acid, and carotenoids in preadipocytes obtained from bovine white adipose tissue. Journal of Animal Science, 88, 1801-1808.
http://dx.doi.org/10.2527/jas.2009-2579
[17] Zhang, X., Zhao, W., Hu, L., Zhao, L. and Huang, J. (2011) Carotenoids inhibit proliferation and regulate expression of peroxisome proliferators-activated receptor gamma (PPARγ) in K562 cancer cells. Archives of Biochemistry and Biophysics, 512, 96-106.
http://dx.doi.org/10.1016/j.abb.2011.05.004
[18] Zebisch, K., Voigt, V., Wabitsch, M. and Brandsch, M. (2012) Protocol for effective differentiation of 3T3-L1 cells to adipocytes. Analytical Biochemistry, 425, 88-90.
http://dx.doi.org/10.1016/j.ab.2012.03.005
[19] Gregoire, F.M. (2001) Adipocyte differentiation: From fibroblast to endocrine cell. Experimental Biology and Medicine, 226, 997-1002.
[20] Xue, J.C., Schwarz, E.J., Chawla, A. and Lazar, M.A. (1996) Distinct stages in adipogenesis revealed by retinoid inhibition of differentiation after induction of PPARγ. Molecular and Cellular Biology, 16, 1567-1575.
[21] Kang, S.I., Ko, H.C., Shin, H.S., Kim, H.M., Hong, Y.S., Lee, N.H. and Kim, S.J. (2011) Fucoxanthin exerts differing effects on 3T3-L1 cells according to differentiation stage and inhibits glucose uptake in mature adipocytes. Biochemical and Biophysical Research Communications, 409, 769-774.
http://dx.doi.org/10.1016/j.bbrc.2011.05.086
[22] Semple, R.K., Chatterjee, V.K. and O’Rahilly, S. (2006) PPAR gamma and human metabolic disease. Journal of Clinical Investigation, 116, 581-589.
http://dx.doi.org/10.1172/JCI28003
[23] Kadowaki, T., Hara, K., Kubota, N., Tobe, K., Terauchi, Y. and Yamauchi, T. (2002) The role of PPARγ in high-fat diet-induced obesity and insulin resistance. Journal of Diabetes and Its Complications, 16, 41-45.
http://dx.doi.org/10.1016/S1056-8727(01)00206-9
[24] Kimura, M., Iida, M., Yamauchi, H., Suzuki, M., Shibasaki, T., Saito, Y. and Saito, H. (2014) Astaxanthin supplementation effects on adipocyte size and lipid profile in OLETF rats with hyperphagia and visceral fat accumulation. Journal of Functional Foods, 11, 114-120.
http://dx.doi.org/10.1016/j.jff.2014.08.001
[25] Arunkumar, E., Bhuvaneswari, S. and Anuradha, C.V. (2012) An intervention study in obese mice with astaxanthin, a marine carotenoid—Effects on insulin signaling and pro-inflammatory cytokines. Food & Function, 3, 120-126.
http://dx.doi.org/10.1039/C1FO10161G
[26] Kim, J.H., Nam, S.-W., Kim, B.W., Kim, W.-J. and Choi, Y.H. (2010) Astaxanthin improves the proliferative capacity as well as the osteogenic and adipogenic differentiation potential in neural stem cells. Food and Chemical Toxicology, 48, 1741-1745.
http://dx.doi.org/10.1016/j.fct.2010.04.002
[27] Frey, S.K. and Vogel, S. (2011) Vitamin A metabolism and adipose tissue biology. Nutrients, 3, 27-39.
http://dx.doi.org/10.3390/nu3010027