单域抗体研究进展
Research Advance in Single-Domain Antibody
DOI: 10.12677/QRB.2015.23004, PDF, HTML, XML, 下载: 4,100  浏览: 23,704  国家自然科学基金支持
作者: 刘 晟, 李敬, 梁兴国*:中国海洋大学食品科学与工程学院,山东 青岛;辛化伟*:武汉科技大学生物医学研究院,湖北 武汉
关键词: 单域抗体纳米抗体重链抗体骆驼鲨鱼免疫球蛋白新抗原受体Single-Domain Antibodies (sdAbs) Nanobodies (Nbs) Heavy-Chain Antibodies (HcAbs) Camel Shark Ig New Antigen Receptor (IgNAR)
摘要: 单域抗体(single-domain antibody, sdAbs)是近年来利用基因工程技术从骆驼科动物和软骨鱼血清中克隆得到的只保留重链可变区的具有抗原结合活性的新型抗体,具有分子量小、特异性高、亲和性好、稳定性高、组织穿透力强、免疫原性低和制备成本低等优点,在诊断、治疗和检测等领域已取得一定成果并获得广泛关注。本文综述了单域抗体的发展历程、结构特征、表达纯化、理化性质及应用方向,特别是对进化上更早出现、抗原结合性能更加多样的鲨鱼sdAbs进行了详尽分析,并对其发展前景和可能面临的问题作了展望。
Abstract: Single-domain antibody (sdAb) represents a new generation of engineered antibody fragment consisted of a single monomeric variable antibody domain, which is derived from camelid heavy- chain antibodies (HcAbs) or cartilaginous immunoglobin new antigen receptor (IgNAR). These novel antibodies are able to bind selectively to a specific antigen. Due to the advantageous features of sdAbs over conventional antibodies and their derivatives, such as smaller size, high affinity, high stability, high permeability in tissues, low immunogenicity and simple, cost-effective production, etc., sdAbs allow a broad range of applications in biotechnical and therapeutic use. This review provides a detailed overview of the developmental history, structural characteristics, expression and purification, properties and potential applications of the sdAbs. Some exciting thoughts and results of the shark sdAb are especially discussed. The risk assessment and problems with respect to future application of sdAbs have also been highlighted.
文章引用:刘晟, 李敬, 梁兴国, 辛化伟. 单域抗体研究进展[J]. 千人·生物, 2015, 2(3): 26-38. http://dx.doi.org/10.12677/QRB.2015.23004

参考文献

[1] Cohen, S.N., Chang, A.C., Boyer, H.W. and Helling, R.B. (1973) Construction of biologically functional bacterial plasmids in vitro. Proceedings of the National Academy of Sciences of the United States of America, 70, 3240-3244.
http://dx.doi.org/10.1073/pnas.70.11.3240
[2] De, M.A. (2011) Biotechnological applications of recombinant sin-gle-domain antibody fragments. Microbial Cell Factories, 10, 44-58.
http://dx.doi.org/10.1186/1475-2859-10-44
[3] Kohler, G. and Milstein, C. (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 256, 495-497.
http://dx.doi.org/10.1038/256495a0
[4] Smith, G.P. (1985) Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science (New York, NY), 228, 1315-1317.
http://dx.doi.org/10.1126/science.4001944
[5] Weiner, L.M. (2006) Fully human therapeutic monoclonal antibodies. Journal of Immunotherapy, 29, 1-9.
http://dx.doi.org/10.1097/01.cji.0000192105.24583.83
[6] Skerra, A. and Pluckthun, A. (1988) Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science (New York, NY), 240, 1038-1041.
http://dx.doi.org/10.1126/science.3285470
[7] Hamers-Casterman, C., Atarhouch, T., Muyldermans, S., Robinson, G., Hamers, C., Songa, E.B., Bendahman, N. and Hamers, R. (1993) Naturally occurring antibodies devoid of light chains. Nature, 363, 446-448.
http://dx.doi.org/10.1038/363446a0
[8] Muyldermans, S. and Lauwereys, M. (1999) Unique single-domain antigen binding fragments derived from naturally occurring camel heavy-chain antibodies. Journal of Molecular Recognition, 12, 131-140.
http://dx.doi.org/10.1002/(SICI)1099-1352(199903/04)12:2<131::AID-JMR454>3.0.CO;2-M
[9] Greenberg, A.S., Avila, D., Hughes, M., Hughes, A., Mckinney, E.C. and Flajnik, M.F. (1995) A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature, 374, 168-173.
http://dx.doi.org/10.1038/374168a0
[10] Flajnik, M.F., Deschacht, N. and Muyldermans, S. (2011) A case of convergence: Why did a simple alternative to canonical antibodies arise in sharks and camels? Plos Biology, 9, 1-5.
http://dx.doi.org/10.1371/journal.pbio.1001120
[11] Kovaleva, M., Ferguson, L., Steven, J., Porter, A. and Barelle, C. (2014) Shark variable new antigen receptor biologics— A novel technology platform for therapeutic drug development. Expert Opinion on Biological Therapy, 14, 1527-1539.
http://dx.doi.org/10.1517/14712598.2014.937701
[12] Goyvaerts, C., Robays, L., De Groeve, K., Raes, G., De Baetselier, P., Thielemans, K. and Breckpot, K. (2010) Targeting lentiviral vectors to dendritic cells by the nanobody display technology. Human Gene Therapy, 21, 1440-1441.
[13] Nuttall, S.D., Krishnan, U.V., Hattarki, M., De Gori, R., Irving, R.A. and Hudson, P.J. (2001) Isolation of the new antigen receptor from wobbegong sharks, and use as a scaffold for the display of protein loop libraries. Molecular Immunology, 38, 313-326.
http://dx.doi.org/10.1016/S0161-5890(01)00057-8
[14] Rahbarizadeh, F., Ahmadvand, D. and Sharifzadeh, Z. (2011) Nanobody: An old concept and new vehicle for immunotargeting. Immunological Investigations, 40, 299-338.
http://dx.doi.org/10.3109/08820139.2010.542228
[15] Swain, M.D., Anderson, G.P., Zabetakis, D., Bernstein, R.D., Liu, J.L., Sherwood, L.J., Hayhurst, A. and Goldman, E.R. (2010) Llama-derived single-domain antibodies for the detection of botulinum A neurotoxin. Analytical and Bioanalytical Chemistry, 398, 339-348.
http://dx.doi.org/10.1007/s00216-010-3905-3
[16] Smolarek, D., Hattab, C., Hassanzadeh-Ghassabeh, G., Cochet, S., Gutiérrez, C., de Brevern, A.G., et al. (2010) A recombinant dromedary antibody fragment (VHH or nanobody) directed against human Duffy antigen receptor for chemokines. Cellular and Molecular Life Sciences, 67, 3371-3387.
http://dx.doi.org/10.1007/s00018-010-0387-6
[17] Bond, C.J., Wiesmann, C., Marsters, J.C. and Sidhu, S.S. (2005) A structure-based database of antibody variable domain diversity. Journal of Molecular Biology, 348, 699-709.
http://dx.doi.org/10.1016/j.jmb.2005.02.063
[18] Araste, F., Ebrahimizadeh, W., Rasooli, I., Rajabibazl, M. and Gargari, S.L.M. (2014) A novel VHH nanobody against the active site (the CA domain) of tumor-associated, carbonic anhydrase isoform IX and its usefulness for cancer diagnosis. Biotechnology Letters, 36, 21-28.
http://dx.doi.org/10.1007/s10529-013-1340-1
[19] Blanc, M.R., Anouassi, A., Abed, M.A., Tsikis, G., Canepa, S., Labas, V., Belghazi, M. and Bruneau, G. (2009) A one-step exclusion-binding procedure for the purification of functional heavy-chain and mammalian-type gamma- globulins from camelid sera. Biotechnology and Applied Biochemistry, 54, 207-212.
http://dx.doi.org/10.1042/BA20090208
[20] Stanfield, R.L., Dooley, H., Flajnik, M.F. and Wilson, I.A. (2004) Crystal structure of a shark single-domain antibody V region in complex with lysozyme. Science, 305, 1770-1773.
http://dx.doi.org/10.1126/science.1101148
[21] Dooley, H. and Flajnik, M.F. (2006) Antibody repertoire development in cartilaginous fish. Developmental and Comparative Immunology, 30, 43-56.
http://dx.doi.org/10.1016/j.dci.2005.06.022
[22] Stanfield, R.L., Dooley, H., Flajnik, M.F. and Wilson, I.A. (2004) Crystal structure of a shark single-domain antibody V region in complex with lysozyme. Science, 305, 1770-1773.
http://dx.doi.org/10.1126/science.1101148
[23] Diaz, M., Stanfield, R.L., Greenberg, A.S. and Flajnik, M.F. (2002) Structural analysis, selection, and ontogeny of the shark new antigen receptor (IgNAR): Identification of a new locus preferentially expressed in early development. Immunogenetics, 54, 501-512.
http://dx.doi.org/10.1007/s00251-002-0479-z
[24] Liu, J.L., Anderson, G.P., Delehanty, J.B., Baumann, R., Hayhurst, A. and Goldman, E.R. (2007) Selection of cholera toxin specific IgNAR single-domain antibodies from a naive shark library. Molecular Immunology, 44, 1775-1783.
http://dx.doi.org/10.1016/j.molimm.2006.07.299
[25] Shoae-Hassani, A., Mortazavi-Tabatabaei, S.A., Sharif, S., Madadi, S., Rezaei-Khaligh, H. and Verdi, J. (2013) Recombinant lambda bacteriophage displaying nanobody towards third domain of HER-2 epitope inhibits proliferation of breast carcinoma SKBR-3 cell line. Archivum Immunologiae et Therapiae Experimentalis, 61, 75-83.
http://dx.doi.org/10.1007/s00005-012-0206-x
[26] Schroter, C., Gunther, R., Rhiel, L., Becker, S., Toleikis, L., Doerner, A., Becker, J., Schonemann, A., Nasu, D., Neuteboom, B., Kolmar, H. and Hock, B. (2015) A generic approach to engineer antibody pH-switches using combinatorial histidine scanning libraries and yeast display. mAbs, 7, 138-151.
http://dx.doi.org/10.4161/19420862.2014.985993
[27] Boder, E.T., Raeeszadeh-Sarmazdeh, M. and Price, J.V. (2012) Engineering antibodies by yeast display. Archives of Biochemistry and Biophysics, 526, 99-106.
http://dx.doi.org/10.1016/j.abb.2012.03.009
[28] Heyduk, E. and Heyduk, T. (2014) Ribosome display enhanced by next generation sequencing: A tool to identify antibody-specific peptide ligands. Analytical Biochemistry, 464, 73-82.
http://dx.doi.org/10.1016/j.ab.2014.07.014
[29] Pan, Y.B., Mao, W.P., Liu, X.X., Xu, C., He, Z.J., Wang, W.Q. and Yan, H. (2012) Selection of single chain variable fragments specific for the human-inducible costimulator using ribosome display. Applied Biochemistry and Biotechnology, 168, 967-979.
http://dx.doi.org/10.1007/s12010-012-9800-y
[30] Jiang, W.Z., Rosenberg, J.N., Wauchope, A.D., Tremblay, J.M., Shoemaker, C.B., Weeks, D.P. and Oyler, G.A. (2013) Generation of a phage-display library of single-domain camelid VHH antibodies directed against Chlamydomonas reinhardtii antigens, and characterization of V(H)Hs binding cell-surface antigens. Plant Journal, 76, 709-717.
http://dx.doi.org/10.1111/tpj.12316
[31] Abbady, A.Q., Al-Mariri, A., Zarkawi, M., Al-Assad, A. and Muyldermans, S. (2011) Evaluation of a nanobody phage display library constructed from a Brucella-immunised camel. Veterinary Immunology and Immunopathology, 142, 49- 56.
http://dx.doi.org/10.1016/j.vetimm.2011.04.004
[32] Goldman, E.R., Anderson, G.P., Liu, J.L., Delehanty, J.B., Sherwood, L.J., Osborn, L.E., Cummins, L.B. and Hayhurst, A. (2006) Facile generation of heat-stable antiviral and antitoxin single domain antibodies from a semisynthetic llama library. Analytical Chemistry, 78, 8245-8255.
http://dx.doi.org/10.1021/ac0610053
[33] Muyldermans, S. (2013) Nanobodies: Natural single-domain antibodies. Annual Review of Biochemistry, 82, 775-797.
http://dx.doi.org/10.1146/annurev-biochem-063011-092449
[34] Liu, J.L., Zabetakis, D., Goldman, E.R. and Anderson, G.P. (2013) Selection and evaluation of single domain antibodies toward MS2 phage and coat protein. Molecular Immunology, 53, 118-125.
http://dx.doi.org/10.1016/j.molimm.2012.07.010
[35] Goldman, E.R., Anderson, G.P., Bernstein, R.D. and Swain, M.D. (2010) Amplification of immunoassays using phage- displayed single domain antibodies. Journal of Immunological Methods, 352, 182-185.
http://dx.doi.org/10.1016/j.jim.2009.10.014
[36] Behdani, M., Zeinali, S., Khanahmad, H., Karimipour, M., Asadzadeh, N., Azadmanesh, K., Khabiri, A., Schoonooghe, S., Anbouhi, M.H., Hassanzadeh-Ghassabeh, G. and Muyldermans, S. (2012) Generation and characterization of a functional nanobody against the vascular endothelial growth factor receptor-2; angiogenesis cell receptor. Molecular Immunology, 50, 35-41.
http://dx.doi.org/10.1016/j.molimm.2011.11.013
[37] Liu, J.L., Zabetakis, D., Brown, J.C., Anderson, G.P. and Goldman, E.R. (2014) Thermal stability and refolding capability of shark derived single domain antibodies. Molecular Immunology, 59, 194-199.
http://dx.doi.org/10.1016/j.molimm.2014.02.014
[38] Liu, J.L., Anderson, G.P. and Goldman, E.R. (2007) Isolation of anti-toxin single domain antibodies from a semi-synthetic spiny dogfish shark display library. BMC Biotechnology, 7, 78-88.
http://dx.doi.org/10.1186/1472-6750-7-78
[39] Walper, S.A., Anderson, G.P., Lee, P.A.B., Glaven, R.H., Liu, J.L., Bernstein, R.D., Zabetakis, D., Johnson, L., Czarnecki, J.M. and Czarnecki, J.M. (2012) Rugged single domain antibody detection elements for Bacillus anthracis spores and vegetative cells. Plos One, 3, 1-10.
[40] Graef, R.R., Anderson, G.P., Doyle, K.A., Zabetakis, D., Sutton, F.N., Liu, J.L., Serrano-Gonzalez, J., Goldman, E.R. and Cooper, L.A. (2011) Isolation of a highly thermal stable lama single domain antibody specific for Staphylococcus aureus enterotoxin B. BMC Biotechnology, 11, 86-96.
http://dx.doi.org/10.1186/1472-6750-11-86
[41] Goldman, E.R., Anderson, G.P., Zabetakis, D., Walper, S., Liu, J.L., Bernstein, R., Calm, A., Carney, J.P., O’Brien, T.W., Walker, J.L. and Garber, E.A.E. (2011) Llama-derived single domain antibodies specific for Abrus agglutinin. Toxins, 3, 1405-1419.
http://dx.doi.org/10.3390/toxins3111405
[42] Hagihara, Y. and Saerens, D. (2014) Engineering disulfide bonds within an antibody. Biochimica et Biophysica Acta— Proteins and Proteomics, 1844, 2016-2023.
http://dx.doi.org/10.1016/j.bbapap.2014.07.005
[43] Wolper, S.A., Battle, S.R., Lee, P.A.B., Zabetakis, D., Turner, K.B., Buckley, P.E., Calm, A.M., Welsh, H.S., Warner, C.R., Zacharko, M.A., Goldman, E.R. and Anderson, G.P. (2014) Thermostable single domain antibody-maltose binding protein fusion for Bacillus anthracis spore protein BclA detection. Analytical Biochemistry, 447, 64-73.
http://dx.doi.org/10.1016/j.ab.2013.10.031
[44] Sircar, A., Sanni, K.A., Shi, J.Y. and Gray, J.J. (2011) Analysis and modeling of the variable region of camelid single- domain antibodies. Journal of Immunology, 186, 6357-6367.
http://dx.doi.org/10.4049/jimmunol.1100116
[45] Dumoulin, M., Conrath, K., Van Meirhaeghe, A., Meersman, F., Heremans, K., Frenken, L.G.J., Muyldermans, S., Wyns, L. and Matagne, A. (2002) Single-domain antibody fragments with high conformational stability. Protein Science, 11, 500-515.
http://dx.doi.org/10.1110/ps.34602
[46] Dolk, E., van der Vaart, M., Hulsik, D.L., Vriend, G., de Haard, H., Spinelli, S., Cambillau, C., Frenken, L. and Verrips, T. (2005) Isolation of llama antibody fragments for prevention of dandruff by phage display in shampoo. Applied and Envi-ronmental Microbiology, 71, 442-450.
http://dx.doi.org/10.1128/AEM.71.1.442-450.2005
[47] Hussack, G., Hirama, T., Ding, W., MacKenzie, R. and Tanha, J. (2011) Engineered single-domain antibodies with high protease resistance and thermal stability. PloS ONE, 6, 1-6.
http://dx.doi.org/10.1371/journal.pone.0028218
[48] Wesolowski, J., Alzogaray, V., Reyelt, J., Unger, M., Juarez, K., Urrutia, M., Cauerhff, A., Danquah, W., Rissiek, B., Scheuplein, F., Schwarz, N., Adriouch, S., Boyer, O., Seman, M., Licea, A., Serreze, D.V., Goldbaum, F.A., Haag, F. and Koch-Nolte, F. (2009) Single domain antibodies: Promising experimental and therapeutic tools in infection and immunity. Medical Microbiology and Immunology, 198, 157-174.
http://dx.doi.org/10.1007/s00430-009-0116-7
[49] Coppieters, K., Dreier, T., Silence, K., de Haard, H., Lauwereys, M., Casteels, P., Beirnaert, E., Jonckheere, H., de Wiele, C.V., Staelens, L., Hostens, J., Revets, H., Remaut, E., Elewaut, D. and Rottiers, P. (2006) Formatted anti-tumor necrosis factor alpha VHH proteins derived from camelids show superior potency and targeting to inflamed joints in a murine model of col-lagen-induced arthritis. Arthritis and Rheumatism, 54, 1856-1866.
http://dx.doi.org/10.1002/art.21827
[50] Alzogaray, V., Danquah, W., Aguirre, A., Urrutia, M., Berguer, P., Vescovi, E.G., Haag, F., Koch-Nolte, F. and Goldbaum, F.A. (2011) Single-domain llama antibodies as specific intracellular inhibitors of SpvB, the actin ADP-ribosylating toxin of Salmonella typhimurium. Faseb Journal, 25, 526-534.
http://dx.doi.org/10.1096/fj.10-162958
[51] Li, T.F., Bourgeois, J.P., Celli, S., Glacial, F., Le Sourd, A.M., Mecheri, S., Weksler, B., Romero, I., Couraud, P.O., Rougeon, F. and Lafaye, P. (2012) Cell-penetrating anti-GFAP VHH and corresponding fluorescent fusion protein VHH-GFP spontaneously cross the blood-brain barrier and specifically recognize astrocytes: Application to brain imaging. Faseb Journal, 26, 3969-3979.
http://dx.doi.org/10.1096/fj.11-201384
[52] Hmila, I., Abdallah, B.A.B., Saerens, D., Benlasfar, Z., Conrath, K., El Ayeb, M., Muyldermans, S. and Bouhaouala- Zahar, B. (2008) VHH, bivalent domains and chimeric heavy chain-only antibodies with high neutralizing efficacy for scorpion toxin AahI’. Molecular Immunology, 45, 3847-3856.
http://dx.doi.org/10.1016/j.molimm.2008.04.011
[53] Anderson, G.P., Matney, R., Liu, J.L., Hayhurst, A. and Goldman, E.R. (2007) Multiplexed fluid array screening of phage displayed anti-ricin single domain antibodies for rapid assessment of specificity. Biotechniques, 43, 806-811.
http://dx.doi.org/10.2144/000112600
[54] Chakravarty, R., Goel, S. and Cai, W.B. (2014) Nanobody: The “magic bullet” for molecular imaging? Theranostics, 4, 386-398.
http://dx.doi.org/10.7150/thno.8006
[55] Vosjan, M.J.W.D., Vercammen, J., Kolkman, J.A., Stigter-van Walsum, M., Revets, H. and van Dongen, G.A.M.S. (2012) Nanobodies targeting the hepatocyte growth factor: Potential new drugs for molecular cancer therapy. Molecular Cancer Therapeutics, 11, 1017-1025.
http://dx.doi.org/10.1158/1535-7163.MCT-11-0891
[56] Hernot, S., Unnikrishnan, S., Du, Z., Cosyns, B., Broisat, A., Muyldermans, S., Lahoutte, T., Klibanov, A.L. and Devoogdt, N. (2012) Nanobody-coupled microbubbles as novel molecular tracer. European Heart Journal, 33, 403-404.
http://dx.doi.org/10.1016/j.jconrel.2011.12.007
[57] Huang, L., Gainkam, L.O.T., Caveliers, V., Vanhove, C., Keyaerts, M., De Baetselier, P., Bossuyt, A., Revets, H. and Lahoutte, T. (2008) SPECT imaging with 99mTc-labeled EGFR-specific nanobody for in vivo monitoring of EGFR expression. Molecular Imaging and Biology, 10, 167-175.
http://dx.doi.org/10.1007/s11307-008-0133-8
[58] Oliveira, S., van Dongen, G.A.M.S., Stigter-van Walsum, M., Roovers, R.C., Stam, J.C., Mali, W., van Diest, P.J. and van Bergen en Henegouwen, P.M.P. (2012) Rapid visualization of human tumor xenografts through optical imaging with a near-infrared fluorescent anti-epidermal growth factor receptor nanobody. Molecular Imaging, 11, 33-46.
[59] Broisat, A., Hernot, S., Toczek, J., De Vos, J., Riou, L.M., Martin, S., Ahmadi, M., Thielens, N., Wernery, U., Caveliers, V., Muyldermans, S., Lahoutte, T., Fagret, D., Ghezzi, C. and Devoogdt, N. (2012) Nanobodies targeting mouse/ human VCAM1 for the nuclear imaging of atherosclerotic lesions. Circulation Research, 110, 927-937.
http://dx.doi.org/10.1161/CIRCRESAHA.112.265140
[60] Muller, M.R., Saunders, K., Grace, C., Jin, M., Piche-Nicholas, N., Steven, J., O’Dwyer, R., Wu, L.Y., Khetemenee, L., Vugmeyster, Y., Hickling, T.P., Tchistiakova, L., Olland, S., Gill, D., Jensen, A. and Barelle, C.J. (2012) Improving the pharmacokinetic properties of biologics by fusion to an anti-HSA shark VNAR domain. mAbs, 4, 673-685.
http://dx.doi.org/10.4161/mabs.22242
[61] Tang, J.C.Y., Szikra, T., Kozorovitskiy, Y., Teixiera, M., Sabatini, B.L., Roska, B. and Cepko, C.L. (2013) A nanobody-based system using fluorescent proteins as scaffolds for cell-specific gene manipulation. Cell, 154, 928-939.
http://dx.doi.org/10.1016/j.cell.2013.07.021
[62] Franco, E.J., Sonneson, G.J., DeLegge, T.J., Hofstetter, H., Horn, J.R. and Hofstetter, O. (2010) Production and characterization of a genetically engineered anti-caffeine camelid antibody and its use in immunoaffinity chromatography. Journal of Chromatography B—Analytical Technologies in the Biomedical and Life Sciences, 878, 177-186.
http://dx.doi.org/10.1016/j.jchromb.2009.06.017
[63] Rothbauer, U., Zolghadr, K., Tillib, S., Nowak, D., Schermelleh, L., Gahl, A., Backmann, N., Conrath, K., Muyldermans, S., Cardoso, M.C. and Leonhardt, H. (2006) Targeting and tracing antigens in live cells with fluorescent nanobodies. Nature Methods, 3, 887-889.
http://dx.doi.org/10.1038/nmeth953
[64] Hernot, S., Unnikrishnan, S., Du, Z.M., Shevchenko, T., Cosyns, B., Broisat, A., Toczek, J., Caveliers, V., Muyldermans, S., Lahoutte, T., Klibanov, A.L. and Devoogdt, N. (2012) Nanobody-coupled microbubbles as novel molecular tracer. Journal of Controlled Release, 158, 346-353.
http://dx.doi.org/10.1016/j.jconrel.2011.12.007
[65] Caussinus, E., Kanca, O. and Affolter, M. (2012) Fluorescent fusion protein knockout mediated by anti-GFP nanobody. Nature Structural & Molecular Biology, 19, 117-121.
http://dx.doi.org/10.1038/nsmb.2180
[66] Sennhauser, G. and Grutter, M.G. (2008) Chaperone-assisted crystallography with DARPins. Structure, 16, 1443-1453.
http://dx.doi.org/10.1016/j.str.2008.08.010
[67] Ermolenko, D.N., Zherdev, A.V. and Dzantiev, B.B. (2004) Antibodies as specific chaperones. Biochemistry—Moscow, 69, 1233-1238.
http://dx.doi.org/10.1007/s10541-005-0069-4
[68] Koide, S. (2009) Engineering of recombinant crystallization chaperones. Current Opinion in Structural Biology, 19, 449-457.
http://dx.doi.org/10.1016/j.sbi.2009.04.008
[69] Abskharon, R., Soror, S., Giachin, G., Pardon, E., El Hassan, H., Le, N., Legname, G., Wohlkonig, A. and Steyaert, J. (2012) Nanobody-stabilize the crystal structure of full-length human PrP. Prion, 6, 115-115.
[70] Van de Broek, B., Devoogdt, N., D’Hollander, A., Gijs, H.L., Jans, K., Lagae, L., Muyldermans, S., Maes, G. and Borghs, G. (2011) Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy. Acs Nano, 5, 4319-4328.
http://dx.doi.org/10.1021/nn1023363
[71] Haselberg, R., Oliveira, S., van der Meel, R., Somsen, G.W. and de Jong, G.J. (2014) Capillary electrophoresis-based assessment of nanobody affinity and purity. Analytica Chimica Acta, 818, 1-6.
http://dx.doi.org/10.1016/j.aca.2014.01.048
[72] He, T., Wang, Y.R., Li, P.E., Zhang, Q., Lei, J.E., Zhang, Z.E., Ding, X.X., Zhou, H.Y. and Zhang, W. (2014) Nanobody-based enzyme immunoassay for aflatoxin in agro-products with high tolerance to cosolvent methanol. Analytical Chemistry, 86, 8873-8880.
http://dx.doi.org/10.1021/ac502390c
[73] Anderson, G.P., Glaven, R.H., Algar, W.R., Susumu, K., Stewart, M.H., Medintz, I.L. and Goldman, E.R. (2013) Single domain antibody-quantum dot conjugates for ricin detection by both fluoroimmunoassay and surface plasmon resonance. Analytica Chimica Acta, 786, 132-138.
http://dx.doi.org/10.1016/j.aca.2013.05.010
[74] Alvarez-Rueda, N., Behar, G., Ferre, V., Pugniere, M., Roquet, F., Gastinel, L., Jacquot, C., Aubry, J., Baty, D., Barbet, J. and Birkle, S. (2007) Generation of llama single-domain antibodies against methotrexate, a prototypical hapten. Molecular Immunology, 44, 1680-1690.
http://dx.doi.org/10.1016/j.molimm.2006.08.007
[75] Doyle, P.J., Arbabi-Ghahroudi, M., Gaudette, N., Furzer, G., Savard, M.E., Gleddie, S., McLean, M.D., Mackenzie, C.R. and Hall, J.C. (2008) Cloning, expression, and characterization of a single-domain antibody fragment with affinity for 15-acetyl-deoxynivalenol. Molecular Immunology, 45, 3703-3713.
http://dx.doi.org/10.1016/j.molimm.2008.06.005
[76] Anderson, G.P. and Goldman, E.R. (2008) TNT detection using llama antibodies and a two-step competitive fluid array immunoassay. Journal of Immunological Methods, 339, 47-54.
http://dx.doi.org/10.1016/j.jim.2008.08.001
[77] Peyvandi, F., Breems, D.A., Knoebl, P., De Man, C., Wu, K.L., Lyssens, C. and Holz, J.B. (2011) First results of the phase II TITAN trial: Anti-von Willebrand factor nanobody as adjunctive treatment for patients with acquired thrombotic thrombocytopenic purpura. Journal of Thrombosis and Haemostasis, 9, 720-721.
[78] 贺生芳 (2013) Intein介导的纳米抗体在大肠杆菌中的表达和纯化. 硕士论文, 西北农林科技大学, 杨凌.
[79] 丁志凌 (2013) 99mTc-EGFR Nanobodies用于肿瘤放射免疫显像的初步研究. 博士论文, 华中科技大学, 武汉.