副溶血弧菌噬菌体基因组研究进展
Recent Advance in Genomes of Vibrio parahaemolyticus Bacteriophages
DOI: 10.12677/QRB.2015.23005, PDF, HTML, XML, 下载: 2,936  浏览: 13,021 
作者: 赵江涛*:郑州大学第五附属医院,河南 郑州
关键词: 副溶血弧菌噬菌体治疗基因组Vibrio parahaemolyticus Bacteriophage Therapy Genome
摘要: 副溶血性弧菌是一种嗜盐性弧菌,常分布于沿岸海水、海河交界处及海产品中。它是我国沿海地区最常见的食物中毒病原菌。食物(尤其是海产品)未作适当处理可能污染大量的副溶血弧菌,导致食物中毒。副溶血弧菌可以导致胃肠炎、伤口感染和败血病。更为重要的是,多重耐药副溶血弧菌的出现极大的威胁着人类的健康并且给抗生素治疗提出了严峻的挑战。而噬菌体治疗是控制细菌感染和污染的抗生素替代方案。对噬菌体基因组结构和基因功能的认知是实现噬菌体治疗的必需步骤。目前,国外已经有多篇关于副溶血弧菌噬菌体基因组的报道,本文立足于近几年的最新进展,着重综述了副溶血弧菌噬菌体的基因组特点。
Abstract: Vibrio parahaemolyticus (VP) is a halophilic vibrio strain; it mainly exists in the coast sea water, the junction of river and sea, and the seafood. It is the most common food poisoning pathogenic bacteria in the coastal areas of China. Food (especially seafood) that not properly treated may contain large number of VP, resulting in food poisoning. VP can cause gastroenteritis, wound in-fection and septicemia. Most importantly, the emergence of multiple drug resistant VP has greatly threatened human health and caused a severe challenge to the treatment of antibiotics. Bacteriophage therapy is considered as an alternative way of controlling bacterial infections and contaminations. Recognition and analysis of genome structure and genes function are the required steps before bacteriophages can be approved as therapeutic agents. Up to date, there are many reports of VP phages’ genomes; this paper summarizes the latest progress in recent years, focusing on a review on the genomic features of Vibrio parahaemolyticus bacteriophage.
文章引用:赵江涛. 副溶血弧菌噬菌体基因组研究进展[J]. 千人·生物, 2015, 2(3): 39-45. http://dx.doi.org/10.12677/QRB.2015.23005

参考文献

[1] Zabala, B., García, K. and Espejo, R.T. (2009) Enhancement of UV light sensitivity of a Vibrio parahaemolyticus O3:K6 pandemic strain due to natural lysogenization by a telomeric phage. Applied and Environmental Microbiology, 75, 1697-1702.
http://dx.doi.org/10.1128/AEM.01995-08
[2] Jun, J.W., Shin, T.H., Kim, J.H., Shin, S.P., Han, J.E., Heo, G.J., De Zoysa, M., Shin, G.W., Chai, J.Y. and Park, S.C. (2014) Bacteriophage therapy of a Vibrio parahaemolyticus infection caused by a multiple-antibiotic-resistant O3:K6 pandemic clinical strain. The Journal of Infectious Diseases, 210, 72-78.
http://dx.doi.org/10.1093/infdis/jiu059
[3] 赵向娜, 杨瑞馥 (2011) 合成噬菌体的贡献与风险. 生命科学, 9, 917-920.
[4] Lu, T.K. and Koeris, M.S. (2011) The next generation of bacteriophage therapy. Current Opinion in Microbiology, 14, 524-531.
http://dx.doi.org/10.1016/j.mib.2011.07.028
[5] Seguritan, V., Feng, I.W., Rohwer, F., Swift, M. and Segall, A.M. (2003) Genome sequences of two closely related Vibrio parahaemolyticus phages, VP16T and VP16C. Journal of Bacteriology, 185, 6434-6447.
http://dx.doi.org/10.1128/JB.185.21.6434-6447.2003
[6] 陈蔚青, 王晓枫, 王普, 吴敏 (2009) 噬菌体裂解酶: 抗菌作用与药物开发研究. 中国新药杂志, 10, 891-894.
[7] 方圆子, 王琰, 孙建和 (2009) 噬菌体裂解酶——现状与未来. 微生物学通报, 12, 1888-1893.
[8] 叶道成, 朱成钢, 史锋 (2005) 噬菌体溶壁酶研究进展. 中国生物工程杂志, 10, 78-82.
[9] Labrie, S.J., Samson, J.E. and Moineau, S. (2010) Bacteriophage resistance mechanisms. Nature Reviews Microbiology, 8, 317-327.
http://dx.doi.org/10.1038/nrmicro2315
[10] Suttle, C.A. (2005) Viruses in the sea. Nature, 437, 356-361.
http://dx.doi.org/10.1038/nature04160
[11] Baudoux, A.C., Hendrix, R.W., Lander, G.C., Bailly, X., Podell, S., Paillard, C., Johnson, J.E., Potter, C.S., Carragher, B. and Azam, F. (2012) Genomic and functional analysis of Vibrio phage SIO-2 reveals novel insights into ecology and evolution of marine siphoviruses. Environmental Microbiology, 14, 2071-2086.
http://dx.doi.org/10.1111/j.1462-2920.2011.02685.x
[12] 孙伟, 朱春宝 (2005) 噬菌体治疗细菌感染的研究. 国外医药: 抗生素分册, 2, 54-58.
[13] 王雨晨, 孙建和 (2011) 噬菌体基因组学研究进展. 畜牧与兽医, 6, 103-106.
[14] 方伟, 杨杏芬, 柯昌文 (2008) 副溶血性弧菌分型研究进展. 中华疾病控制杂志, 5, 468-472.
[15] Lin, Y.R. and Lin, C.S. (2012) Genome-wide characterization of Vibrio phage φpp2 with unique arrangements of the mob-like genes. BMC Genomics, 13, 224.
http://dx.doi.org/10.1186/1471-2164-13-224
[16] Yeung, P.S. and Boor, K.J. (2004) Epidemiology, pathogenesis, and prevention of foodborne Vibrio parahaemolyticus infections. Foodborne Pathogens and Disease, 1, 74-88.
http://dx.doi.org/10.1089/153531404323143594
[17] Su, Y.C. and Liu, C. (2007) Vibrio parahaemolyticus: A concern of seafood safety. Food Microbiology, 24, 549-558.
http://dx.doi.org/10.1016/j.fm.2007.01.005
[18] Hagens, S. and Loessner, M.J. (2007) Application of bacteriophages for detection and control of foodborne pathogens. Applied Microbiology and Biotechnology, 76, 513-519.
http://dx.doi.org/10.1007/s00253-007-1031-8
[19] Peng, Y., Jin, Y., Lin, H., Wang, J. and Khan, M.N. (2014) Application of the VPp1 bacteriophage combined with a coupled enzyme system in the rapid detection of Vibrio parahaemolyticus. Journal of Microbiological Methods, 98, 99-104.
http://dx.doi.org/10.1016/j.mimet.2014.01.005
[20] Chang, B., Taniguchi, H., Miyamoto, H. and Yoshida, S. (1998) Filamentous bacteriophages of Vibrio parahaemolyticus as a possible clue to genetic transmission. Journal of Bacteriology, 180, 5094-5101.
[21] Chan, B., Miyamoto, H., Taniguchi, H. and Yoshida, S. (2002) Isolation and genetic characterization of a novel filamentous bacteriophage, a deleted form of phage f237, from a pandemic Vibrio parahaemolyticus O4:K68 strain. Microbiology and Immunology, 46, 565-569.
http://dx.doi.org/10.1111/j.1348-0421.2002.tb02734.x
[22] Alanis Villa, A., Kropinski, A.M., Abbasifar, R., Abbasifar, A. and Griffiths, M.W. (2012) Genome sequence of temperate Vibrio parahaemolyticus bacteriophage vB_VpaS_MAR10. Journal of Virology, 86, 13851-13852.
http://dx.doi.org/10.1128/JVI.02666-12
[23] Kim, J.H., Jun, J.W., Choresca, C.H., Shin, S.P., Han, J.E. and Park, S.C. (2012) Complete genome sequence of a novel marine siphovirus, pVp-1, infecting Vibrio parahaemolyticus. Journal of Virology, 86, 7013-7014.
http://dx.doi.org/10.1128/JVI.00742-12
[24] Miller, E.S., Heidelberg, J.F., Eisen, J.A., Nelson, W.C., Durkin, A.S., Ciecko, A., Feldblyum, T.V., White, O., Paulsen, I.T., Nierman, W.C., Lee, J., Szczypinski, B. and Fraser, C.M. (2003) Complete genome sequence of the broad- host-range vibriophage KVP40, comparative genomics of a T4-related bacteriophage. Journal of bacteriology, 185, 5220-5233.
http://dx.doi.org/10.1128/JB.185.17.5220-5233.2003
[25] Alanis Villa, A., Kropinski, A.M., Abbasifar, R. and Griffiths, M.W. (2012) Complete genome sequence of Vibrio parahaemolyticus bacteriophage vB_VpaM_MAR. Journal of Virology, 86, 13138-13139.
http://dx.doi.org/10.1128/JVI.02518-12
[26] Bastias, R., Higuera, G., Sierralta, W. and Espejo, R.T. (2010) A new group of cosmopolitan bacteriophages induce a carrier state in the pandemic strain of Vibrio parahaemolyticus. Environmental Microbiology, 12, 990-1000.
http://dx.doi.org/10.1111/j.1462-2920.2010.02143.x
[27] Ramirez-Orozco, M., Serrano-Pinto, V., Ochoa-Alvarez, N., Makarov, R. and Martinez-Diaz, S.F. (2013) Genome sequence analysis of the Vibrio parahaemolyticus lytic bacteriophage VPMS1. Archives of Virology, 158, 2409-2413.
http://dx.doi.org/10.1007/s00705-013-1726-3
[28] Hardies, S.C., Comeau, A.M., Serwer, P. and Suttle, C.A. (2003) The complete sequence of marine bacteriophage VpV262 infecting Vibrio parahaemolyticus indicates that an ancestral component of a T7 viral supergroup is widespread in the marine environment. Virology, 310, 359-371.
http://dx.doi.org/10.1016/S0042-6822(03)00172-7