有机电致发光器件外耦合的方法研究
The Approaches to Achieving High Out-Coupling Organic Light-Emitting Diodes
DOI: 10.12677/OE.2015.53006, PDF, HTML, XML, 下载: 2,656  浏览: 8,530 
作者: 李 明:上海大学,材料科学与工程学院,上海;上海大学,新型显示技术与应用集成教育部重点实验室,上海;林 洋, 张 浩, 魏 斌*:上海大学,新型显示技术与应用集成教育部重点实验室,上海
关键词: 高效率光谱OLED外耦合High Efficiency Spectrum OLED Out-Coupling
摘要: 高出光效率有机电致发光器件(OLED)以其优越的性能逐渐受到越来越多人的关注。本文通过三种方法提高OLED器件的外耦合:1) 基板打磨;2) 在玻璃外涂布微粒球;3) 在玻璃外贴PVA导膜。在通过显微镜、原子力显微镜以及扫描电子显微镜对玻璃表面形貌扫描进行了观察的基础上,我们研究了器件的光电性质。我们发现三种高出光率器件对OLED的出光率都有不用程度的提高。其中打磨器件的出光率有稍微的提高,不同打磨基板对器件出光率的提高程度不一样;微粒球器件光取出性能更优越,并且不同微粒球基板在相同电流密度下的电流密度基本一致;PVA导膜器件方法简单稳定。
Abstract: Organic light-emitting diodes (OLED) attracted many interests for their excellent performance. In this article, we enhance out-coupling devices with three methods: 1) Modified substrate; 2) Coated sphere-substrate outside the glass; 3) Pasting PVA film outside the glass. Through the observation of the appearance of them by microscope, SEM and AFM, all devices have high out-coupling efficiency, in which rough devices have slight improvement and different devices have different appearance. Sphere-substrate devices have great improvement and different devices have similar appearance. Devices with PVA film are simple and stable.
文章引用:李明, 林洋, 张浩, 魏斌. 有机电致发光器件外耦合的方法研究[J]. 光电子, 2015, 5(3): 33-39. http://dx.doi.org/10.12677/OE.2015.53006

参考文献

[1] Van Slyke, S.A., Chen, C.H. and Tang, C.W. (1996) Organic electroluminescent devices with improved stability. Applied Physics Letters, 69, 2160-2162. http://dx.doi.org/10.1063/1.117151
[2] Shirota, Y., Kuwabara, Y., Inada, H., et al. (1994) Multilayered organic electroluminescent device using a novel starburst molecule, 4,4’,4’-tris(3-methylphenylphenylamino)triphenylamine, as a hole transport material. Applied Physics Letters, 65, 807-809. http://dx.doi.org/10.1063/1.112238
[3] Yang, Y. and Heeger, A.J. (1994) Polyaniline as a transparent electrode for polymer light-emitting diodes: Lower operating voltage and higher efficiency. Applied Physics Letters, 64, 1245-1247. http://dx.doi.org/10.1063/1.110853
[4] Min Ho, L., Jae Hun, J., Jae Ho, S., et al. (2011) Electrical bistabilities and stabilities of organic bistable devices fabricated utilizing 6,6-phenyl-c85 butyric acid methyl ester blended into a polymethyl methacrylate layer. Organic Electronics, 12, 1341-1345.
[5] Bozano, L.D., Kean, B.W., Beinhoff, M., et al. (2005) Organic materials and thin-film structures for cross-point memory cells based on trapping in metallic nanoparticles. Advanced Functional Materials, 15, 1933-1939. http://dx.doi.org/10.1002/adfm.200500130
[6] Wang, M.L., Sun, X.Y., Zheng, X.Y., et al. (2009) Loss and recovery of bistability of organic bistable devices. Organic Electronics, 10, 965-969. http://dx.doi.org/10.1016/j.orgel.2009.05.004
[7] Lee, J., Hong, W.G. and Lee, H. (2011) Non-volatile organic memory effect with thickness control of the insulating LiF charge trap layer. OrganicElectronics, 12, 988-992. http://dx.doi.org/10.1016/j.orgel.2011.03.021
[8] Mahapatro, A.K., Agrawal, R. and Ghosh, S. (2004) Elec-tric-field-induced conductance transition in 8-hydroxyquino- line aluminum (Alq3). Journal of Applied Physics, 96, 3583-3586. http://dx.doi.org/10.1063/1.1778211
[9] Shtein, M., Gossenberger, H.F., Benziger, J.B., et al. (2001) Material transport regimes and mechanisms for growth of molecular organic thin films using low-pressure organic vapor phase deposition. Journal of Applied Physics, 89, 1470- 1476. http://dx.doi.org/10.1063/1.1332419
[10] Shekar, B.C., Lee, J.Y. and Rhee, S.W. (2004) Organic thin film transistors: Materials, process and devices. Korean Journal of Chemical Engineering, 21, 267-285. http://dx.doi.org/10.1007/BF02705409
[11] Guerrero, B.A.G., Arocha-Piñango, C.L. and San Juan, A.G. (1997) Degradation of human factor XIII by LONOMIN V, a purified fraction of Lonomia achelous caterpillar venom. Thrombosis Research, 87, 171-181. http://dx.doi.org/10.1016/S0049-3848(97)00117-5
[12] Elschner, A., Bruder, F., Heuer, H.W., et al. (2000) PEDT/PSS for efficient hole-injection in hybrid organic light-emit- ting diodes. Synthetic Metals, 111-112, 139-143. http://dx.doi.org/10.1016/S0379-6779(99)00328-8
[13] Brown, T.M., Kim, J.S., Friend, R.H., et al. (1999) Built-in field electroabsorption spectroscopy of polymer light- emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer. Applied Physics Letters, 75, 1679-1681. http://dx.doi.org/10.1063/1.124789
[14] Ganzorig, C. and Fujihira, M. (2000) Improved drive voltages of organic electroluminescent devices with an efficient p-type aromatic diamine hole-injection layer. Applied Physics Letters, 77, 4211-4213. http://dx.doi.org/10.1063/1.1331640
[15] Barth, S., Wolf, U., Bassler, H., et al. (1999) Current injection from a metal to a disordered hopping system. III. Comparison between experiment and Monte Carlo simulation. Physical Review B, 60, 8791-8797. http://dx.doi.org/10.1103/PhysRevB.60.8791
[16] Kiy, M., Biaggio, I., Koehler, M., et al. (2002) Conditions for Ohmic electron injection at the Mg/Alq3 interface. Applied Physics Letters, 80, 4366-4368. http://dx.doi.org/10.1063/1.1484558
[17] Tang, C.W., Van Slyke, S.A. and Chen, C.H. (1989) Electroluminescence of doped organic thin films. Journal of Applied Physics, 65, 3610-3616. http://dx.doi.org/10.1063/1.343409
[18] Wu, C.C., Wu, C.I., Sturm, J.C., et al. (1997) Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices. Applied Physics Letters, 70, 1348-1350. http://dx.doi.org/10.1063/1.118575