泛摆线泵油槽结构对流量特性影响分析及优化
Analysis and Optimization of the Influence of the Cavity Structure of the Pan-Cycloid Pump on the Flow Characteristic
DOI: 10.12677/JAST.2015.33004, PDF, HTML, XML, 下载: 2,487  浏览: 7,077  国家自然科学基金支持
作者: 曹逸韬, 王云:南昌航空大学,飞行器工程学院,江西 南昌
关键词: 航空发动机泛摆线泵进、出油槽实际流量流量脉动Aircraft Engine Pan-Cycloid Pump Inlet and Outlet Cavity Actual Flow Flow Pulsation
摘要: 为了使航空发动机用泛摆线泵在各飞行高度下,保持良好的容积效率的基础上,有效降低流量脉动。本文利用CFD方法,分不同工作高度,对不同油槽结构的摆线泵内流场进行仿真。发现对于高转速单级泵,可以通过沟通进油槽或同时沟通进、出油槽的方式,有效降低流量脉动。为了更好地减小压力脉动,本文对进、出油槽同时沟通的情况进行了进一步分析,发现随着沟通面积的增大及油槽间距的缩短,实际流量呈先上升再下降的趋势,流量脉动呈先急速下降再缓慢上升的趋势。证明合理的选择沟通面积及油槽间距能保证流量,同时有效降低流量脉动。对于多级泵,通过对内转子齿数为4的两级泛摆线泵进行仿真,结果证明错相位法能够大幅降低多级泵的流量脉动。
Abstract: To reduce the flow pulsation of the pan-cycloid pump of the aircraft engine effectively in different flight heights on the premise of maintaining excellent volumetric efficiency, simulations of flow field in the pan-cycloid pump of different cavity structure in different working heights are conducted with CFD method in this paper. It found that for high-speed single-stage pump, communicating inlet cavity or communicating both inlet and outlet cavity can reduce the flow pulsation effectively. Meanwhile, in order to reduce the pressure pulsation, the analysis under the situation of communicating both inlet and outlet cavity is carried out further, and we find that with the increase of the area of communication and decrease of the distance between the cavity, the actual flow rate increases at first and then declines, and the flow pulsation declines rapidly at first and then rises slowly. It is justified that this situation can reduce the flow pulsation effectively, while maintaining the enough actual flow. For multi-stage pump, through the simulation of two-stage pan-cycloid pump with 4 inner rotor teeth, it is proved that dislocation method can significantly reduce the flow pulsation of multi-stage pump.
文章引用:曹逸韬, 王云. 泛摆线泵油槽结构对流量特性影响分析及优化[J]. 国际航空航天科学, 2015, 3(3): 25-36. http://dx.doi.org/10.12677/JAST.2015.33004

参考文献

[1] 毛华永, 李国祥, 徐秀兰, 等 (2003) 摆线转子式齿轮泵的设计. 粉末冶金技术, 5, 282-286.
[2] 《航空发动机设计手册》总编委 (2002) 航空发动机设计手册: 第12册——传动及润滑系统. 航空工业出版社, 北京.
[3] 刘乐平, 陈为国, 戴哲敏 (2010) 液压与气压传动. 江西高校出版社, 南昌.
[4] 杨元模, 王生保, 万慧君 (2009) 基于提高内啮合–摆线转子式机油泵综合性能的研究. 液压与气动, 1, 13-16.
[5] 徐学忠 (2006) 摆线泵流量特性分析及计算机仿真. 机械传动, 6, 42-44.
[6] 薛程亮, 赵建军 (2013) 基于CFD的摆线泵进出油腔对容积效率影响的分析. 计算机辅助工程, 1, 1-5.
[7] 沈栋平 (2011) 摆线泵CFD模拟分析. CAD/CAM与制造业信息化, 9, 59-60.