失效光催化剂的再生方法综述
Regeneration Methods of Deactivated Photocatalyst: A Review
DOI: 10.12677/AEP.2015.55015, PDF, HTML, XML,  被引量 下载: 2,399  浏览: 8,680  国家自然科学基金支持
作者: 严晓菊*:河海大学水文水资源学院,江苏 南京;李力争:中机中联工程有限公司,重庆
关键词: 光催化剂再生方法可重复性Photocatalyst Regeneration Method Repeatability
摘要: 光催化剂失效问题是光催化技术工业化应用的一个瓶颈问题,光催化剂失效后的再生处理则非常重要。文章综述了国内外文献中失效光催化剂的各种再生方法,如煅烧、清洗、氧化还原、树脂吸附等,并综述了各种再生方法的再生效果及技术关键。另外,一种有效的再生方法应该在每次再生后都保持较高的光催化活性恢复率,所以考察再生方法的可重复性也很重要,但国内外文献中相关研究相对较少。
Abstract: The deactivation problem of photocatalyst prohibits the industrial application of photocatalysis technology. Therefore, the regeneration methods of the deactivated photocatalyst are essential. Among the domestic and foreign literatures, this article reviews the regeneration methods of the deactivated photocatalyst such as calcinations, cleaning, oxidation reduction and resin adsorption, etc. The regeneration effects and the key techniques of each regeneration methods are also studied. Moreover, the repeatability of the regeneration methods is also important, since an effective regeneration method should maintain a relative high regeneration rate after ever regeneration process. However, this character of the regeneration methods is hardly studied in recent studies.
文章引用:严晓菊, 李力争. 失效光催化剂的再生方法综述[J]. 环境保护前沿, 2015, 5(5): 113-118. http://dx.doi.org/10.12677/AEP.2015.55015

参考文献

[1] Sun, R., Nakajima, A., Watanabe, T. and Hashimoto, K. (2003) Decomposition of gas-phase octamethyltrisiloxane on TiO2 thin film photocatalysts—Catalytic activity, deactivation, and regeneration. Journal of Photochemistry and Pho-tobiology A: Chemistry, 154, 203-209.
http://dx.doi.org/10.1016/S1010-6030(02)00322-2
[2] Joana, T.C., Jacob, A.M. and Guido, M. (2010) Photocatalytic oxidation of cyclohexane by titanium dioxide: Catalyst deactivation and re-generation. Journal of Catalysis, 273, 199-210.
http://dx.doi.org/10.1016/j.jcat.2010.05.015
[3] Cao, L., Gao, Z., Suib, S.L., et al. (2000) Photocatalytic oxidation of toluene on nanoscale TiO2 catalysts: Studies of deactivation and regeneration. Journal of Catalysis, 196, 253-261.
http://dx.doi.org/10.1006/jcat.2000.3050
[4] Raquel, P., Maria, C.C., Benigno, S., et al. (2008) H2S photodegradation by TiO2/M-MCM-41 (M = Cr or Ce): Deactivation and by-product generation under UV-A and visible light. Applied Catalysis B: Environmental, 84, 643-650.
http://dx.doi.org/10.1016/j.apcatb.2008.05.020
[5] Sujaree, K. and Burtrand, I.L. (2010) Deactivation and rege-neration of visible light active brookite titania in photocatalytic degradation of organic dye. Journal of Photochemistry and Photobiology A: Chemistry, 210,162-167.
http://dx.doi.org/10.1016/j.jphotochem.2009.12.018
[6] Jorge, M., Josafat, G., Claudio, F. and Sergio, C. (2006) The photocatalytic application and regeneration of anatase thin films with embedded commercial TiO2 particles deposited on glass microrods. Applied Surface Science, 252, 3600- 3608.
http://dx.doi.org/10.1016/j.apsusc.2005.05.045
[7] Seree, T. and Winai, L. (2005) Lifetime and regeneration of immobilized titania for photocatalytic removal of aqueous hexavalent chromium. Journal of Hazardous Materials, 124, 53-58.
http://dx.doi.org/10.1016/j.jhazmat.2005.03.027
[8] Alexandre, V.V., Evgueni, N.S., Claude, L. and Pa-nagiotis, G.S. (2003) TiO2 reactivation in photocatalytic destruction of gaseous diethyl sulfide in a coil reactor. Applied Catalysis B: Environmental, 44, 25-40.
http://dx.doi.org/10.1016/S0926-3373(03)00007-9
[9] Gandhi, V.G., Mishra, M.K. and Joshi, P.A. (2012) A study on deactivation and regeneration of titanium dioxide during photocatalytic degradation of phthalic acid. Journal of Industrial and Engineering Chemistry, 18, 1902-1907.
http://dx.doi.org/10.1016/S0926-3373(03)00007-9
[10] Jing, L., Xin, B., Yuan, F., et al. (2004) Deactivation and regeneration of ZnO and TiO2 nanoparticles in the gas phase photocatalytic oxidation of n-C7H16 or SO2. Applied Ca-talysis, 275, 49-54.
http://dx.doi.org/10.1016/j.apcata.2004.07.019
[11] Yang, W., Li, C., Wang, L., Sun, S. and Yan, X. (2015) Sol-vothermal fabrication of activated semi-coke supported TiO2-rGO nanocomposite photocatalysts and application for NO removal undervisible light. Applied Surface Science, 353, 307-316.
http://dx.doi.org/10.1016/j.apsusc.2015.04.140
[12] Jeong, M., Park, E.J., Seo, H.O., et al. (2013) Humidity effect on photocatalytic activity of TiO2 and regeneration of deactivated photocatalysts. Applied Surface Science, 271, 164-170.
http://dx.doi.org/10.1016/j.apsusc.2013.01.155
[13] Li, X., Zhang, G. and Pan, H. (2012) Experimental study on ozone photolytic and photocatalytic degradation of H2S using continuous flow mode. Journal of Hazardous Materials, 199-200, 255-261.
http://dx.doi.org/10.1016/j.jhazmat.2011.11.006
[14] Thevenet, F., Guillard, C. and Rousseau, A. (2014) Acetylene photocatalytic oxidation using continuous flow reactor: Gas phase and adsorbed phase investigation, assessment of the photocatalyst deactivation. Chemical Engineering Journal, 244, 50-58.
http://dx.doi.org/10.1016/j.cej.2014.01.038
[15] Jeong, J., Sekiguchi, K. and Sakamoto, K. (2004) Photochemical and photocatalytic degradation of gaseous toluene using short-wavelength UV irradiation with TiO2 catalyst: Comparison of three UV sources. Chemosphere, 57, 663- 671.
http://dx.doi.org/10.1016/j.chemosphere.2004.05.037
[16] Miranda-Garcia, N., Suarez, S. and Maldonado, M.I. (2014) Regeneration approaches for TiO2 immobilized photocatalyst used in the elimination of emerging contaminants in water. Catalysis Today, 230, 27-34.
http://dx.doi.org/10.1016/j.cattod.2013.12.048
[17] Li, Y., Jiao, Z., Yang, N. and Gao, H. (2009) Regeneration of nano-ZnO photocatalyst by the means of soft-mechano- chemical ion exchange method. Journal of Environmental Sciences Supplement, 21, S69-S72.
http://dx.doi.org/10.1016/S1001-0742(09)60040-1
[18] Shavisi, Y., Sharifnia, S. and Zendehzaban, M. (2014) Application of solar light for degradation of ammonia in petrochemical wastewater by a floating TiO2/LECA photocatalyst. Journal of Industrial and Engineering Chemistry, 20, 2806-2813.
http://dx.doi.org/10.1016/j.jiec.2013.11.011