元素替代对LaO0.5F0.5Bi(Se1-xSx)2超导体晶格和电子结构的影响
The Effects of Element Substitution on the Crystal Lattice and Electronic Structure of LaO0.5F0.5Bi(Se1-xSx)2 Superconductor
DOI: 10.12677/CMP.2015.43011, PDF, HTML, XML, 下载: 2,702  浏览: 7,610  国家自然科学基金支持
作者: 魏梦俊, 王妮娜, 路洪艳*:淮北师范大学物理与电子信息学院,安徽 淮北;吕增涛:聊城大学物理科学与信息工程学院,山东 聊城
关键词: LaO0.5F0.5Bi(Se1-xSx)2元素替代晶格参数电子结构LaO0.5F0.5Bi(Se1-xSx)2 Element Substitution Lattice Parameter Electronic Structure
摘要: 基于第一性原理计算,本文研究了S元素替代对最近新发现的BiSe2基超导体LaO0.5F0.5Bi (Se1−xSx)2晶格和电子结构的影响。发现随着S掺杂浓度的增加,晶格参数a,c以及原胞体积V都呈下降的趋势。研究了LaO0.5F0.5BiSe2和LaO0.5F0.5BiS2的电子结构,发现二者都具有多带结构,费米面具有准二维结构,费米处的态密度主要来自于Bi-6p轨道。然后运用两种不同方法建立LaO0.5F0.5Bi (Se0.5S0.5)2原胞模型,发现两者费米面出现显著不同,表明Se1和Se2位置原子的不等价性。最后计算发现随着S掺杂浓度的增大,费米面处态密度先增大再减小,在x = 0.6时取得最大值,与实验描绘的Tc~x相图基本一致,预示着LaO0.5F0.5Bi (Se1−xSx)2可能为电声耦合的常规超导体。
Abstract: Based on first-principle calculations, this work investigates the effects of element substitution on the crystal lattice and electronic structure of the newly discovered BiSe2-based superconductor LaO0.5F0.5Bi(Se1−xSx)2. With the increase of S doping level, it is found that the lattice parameters a, c, and the unit-cell volume V gradually decrease. For the electronic structure of LaO0.5F0.5BiSe2 and LaO0.5F0.5BiS2, they both have multi-band structure, and show quasi two-dimensional Fermi surface (FS). The density of states (DOS) at the FS mainly comes from Bi-6p orbital. For LaO0.5F0.5Bi(Se0.5S0.5)2, using two different models established by different unit-cell model, we find that their FSs are significantly different, indicating the inequivalence of Se1- and Se2-position atoms. Besides, with the increasing of S doing level, the DOS at Fermi energy firstly increases and then decreases. When the concentration of S is x = 0.6, the DOS has a maximum value, which is consistent with the experimental Tc~x phase diagram, indicating that LaO0.5F0.5Bi(Se1−xSx)2 may be an electron-phonon coupling superconductor.
文章引用:魏梦俊, 王妮娜, 吕增涛, 路洪艳. 元素替代对LaO0.5F0.5Bi(Se1-xSx)2超导体晶格和电子结构的影响[J]. 凝聚态物理学进展, 2015, 4(3): 93-101. http://dx.doi.org/10.12677/CMP.2015.43011

参考文献

[1] Mizuguchi, Y., Fujihisa, H., Gotoh, Y., Suzuki, K., Usui, H., Kuroki, K. and Miura, O. (2012) BiS2-based layered superconductor Bi4O4S3. Physical Review B, 86, Article ID: 220510.
http://dx.doi.org/10.1103/PhysRevB.86.220510
[2] Lin, X., Ni, X.X., Chen, B., Xu, X.F., Yang, X.X., Dai, J.H., Li, Y.K., Yang, X.J., Luo, Y.K., Tao, Q., Cao, G.H. and Xu, Z. (2013) Superconductivity induced by La doping in Sr1−xLaxFBiS2. Physical Review B, 87, Article ID: 020504.
http://dx.doi.org/10.1103/physrevb.87.020504
[3] Lei, H.C., Wang, K.F., Abeykoon, M., Bozin, E.S. and Petrovic, C. (2013) New layered fluorosulfide SrFBiS2. Inorganic Chemistry, 52, 10685-10689.
http://dx.doi.org/10.1021/ic4018135
[4] Yazici, D., Huang, K., White, B.D., Jeon, I., Burnett, V.W., Friedman, A.J., Lum, I.K., Nallaiyan, M., Spagna, S. and Maple, M.B. (2013) Superconductivity induced by electron doping in La1−xMxOBiS2 (M= Ti, Zr, Hf, Th). Physical Review B, 87, Article ID: 174512.
http://dx.doi.org/10.1103/PhysRevB.87.174512
[5] Demura, S., Mizuguchi, Y., Deguchi, K., Okazaki, H., Hara, H., Watanabe, T., Denholme, S.J., Fujioka, M., Ozaki, T., Fujihisa, H., Gotoh, Y., Miura, O., Yamaguchi, T., Takeya, H. and Takano, Y. (2013) New member of BiS2-based Superconductor NdO1-xFxBiS2. Journal of the Physical Society of Japan, 82, Article ID: 033708.
http://dx.doi.org/10.7566/JPSJ.82.033708
[6] Xing, J., Li, S., Ding, X.X.,Yang, H. and Wen, H.H. (2012) Superconductivity appears in the vicinity of semiconducting-like behavior in CeO1−xFxBiS2. Physical Review B, 86, Article ID: 214518.
http://dx.doi.org/10.1103/PhysRevB.86.214518
[7] Awana, V.P.S., Kumar, A., Jha, R., Singh, S.K., Pal, A., Saha, J. and Patnaik, S. (2013) Appearance of superconductivity in layered LaO0.5F0.5BiS2. Solid State Communications, 157, 21-23.
http://dx.doi.org/10.1016/j.ssc.2012.11.021
[8] Jha, R., Kumar, A., Singh, S.K. and Awana, V.P.S. (2013) Synthesis and superconductivity of New BiS2 based superconductor PrO0.5F0.5BiS2. Journal of Superconductivity and Novel Magnetism, 26, 499-502.
http://dx.doi.org/10.1007/s10948-012-2097-9
[9] Yazici, D., Huang, K., White, B.D., Chang, A.H., Friedman, A.J. and Maple, M.B. (2013) Superconductivity of F-substituted LnOBiS2 (Ln=La, Ce, Pr, Nd, Yb) compounds. Philosophical Magazine, 93, 673-680.
http://dx.doi.org/10.1080/14786435.2012.724185
[10] Mizuguchi, Y., Demura, S., Deguchi, K., Takano, Y., Fujihisa, H., Gotoh, Y., Izawa, H. and Miura, O. (2012) Superconductivity in novel BiS2-based layered superconductor LaO1−xFxBiS2. Journal of the Physical Society of Japan, 81, Article ID: 114725.
http://dx.doi.org/10.1143/JPSJ.81.114725
[11] Takahashi, H., Igawa, K., Arii, K., Kamihara, Y., Hirano, M. and Hosono, H. (2008) Superconductivity at 43 K in an iron-based layered compound LaO1−xFxFeAs. Nature, 453, 376-378.
http://dx.doi.org/10.1038/nature06972
[12] Krzton-Maziopa, A., Guguchia, Z., Pomjakushina, E., Pomjakushin, V., Khasanov, R., Luetkens, H., Biswas, P.K., Amato, A., Keller, H. and Conder, K. (2014) Superconductivity in a new layered bismuth oxyselenide: LaO0.5F0.5BiSe2. Journal of Physics: Condensed Matter, 26, Article ID: 215702.
http://dx.doi.org/10.1088/0953-8984/26/21/215702
[13] Feng, Y.Q., Ding, H.C., Du, Y.P., Wan, X.G., Wang, B.G., Savrasov, S.Y. and Duan, C.G. (2014) Electron-phonon superconductivity in LaO0.5F0.5BiSe2. Journal of Applied Physics, 115, Article ID: 233901.
http://dx.doi.org/10.1063/1.4883755
[14] Hiroi, T., Kajitani, J., Omachi, A., Miura, O. and Mizuguchi, Y. (2015) Evolution of superconductivity in BiS2-based superconductor LaO0.5F0.5Bi(S1−xSex). Journal of the Physical Society of Japan, 84, Article ID: 024723.
http://dx.doi.org/10.7566/JPSJ.84.024723
[15] Milman, V., Winkler, B., White, J.A., Packard, C.J., Payne, M.C., Akhmatskaya, E.V. and Nobes, R.H. (2000) Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study. International Journal of Quantum Chemistry, 77, 895.
http://dx.doi.org/10.1002/(SICI)1097-461X(2000)77:5<895::AID-QUA10>3.0.CO;2-C
[16] Payne, M.C., Teter, M.P., Allan, D.C. and Arias, T.A. (1992) Iterative minimization techniques for ab initio total- energy calculations: molecular dynamics and conjugate gradients. Reviews of Modern Physics, 64, 1045.
http://dx.doi.org/10.1103/RevModPhys.64.1045
[17] Vanderbilt, D. (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 41, 7892(R).
http://dx.doi.org/10.1103/PhysRevB.41.7892
[18] Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized gradient approximation made simple. Physical Review Letters, 77, 3865.
http://dx.doi.org/10.1103/physrevlett.77.3865