空间–数字反应联合编码中的注意机制述评
The Attentional Mechanism in Spatial Numerical Association of Response Codes: A Top-Down or Bottom-Up Based Processing
DOI: 10.12677/AP.2015.510076, PDF, HTML, XML, 下载: 2,512  浏览: 10,902 
作者: 葛 慧:西藏职业技术学院,西藏 拉萨;程晓荣, 范 炤:华中师范大学心理学院,湖北 武汉
关键词: 空间–数字反应联合编码注意自上而下自下而上Spatial Numerical Association of Response Codes Attention Top-Down Bottom-Up
摘要: 近几年来,SNARC (空间–数字反应联合编码)效应受到广泛关注,其内在机制也得到深入探讨。本文总结数字认知引起空间注意转移和空间注意线索激活不同数字表征两个方面的文献,试从注意的自上而下(top-down)和自下而上(bottom-up)加工理论来分析SNARC效应中的注意机制,最后从认知控制的角度来讨论自下而上的加工和自上而下的加工之间的交互作用——即主动性和被动性两种认知控制的动态平衡。
Abstract: The SNARC (Spatial Numerical Association of Response Codes) effect, in that people respond faster with the left-hand side to small numbers and with the right-hand side to large numbers, had in-spired intensive studies on spatial-numerical representation and its underlying mechanisms in recent years. Deheane et al. (1993) indicated that there is a mental number line in brain, in which the smaller number located in the left side and the larger number located in the right side. The spatial position of a number is activated automatically when a number was displayed. Attention plays the non-neglectable role in SNARC effect. Top-down and bottom-up driven processing are two important thinking ways. Bottom-up driven theory holds that the spacial characteristics of number are stable. Numerical and spacial information are activated simultaneously, yet top-down driven theory holds that number have no stable spacial characteristics and SNARC effect is output of subjective strategy control according to tasks. Concerning the role of attention in SNARC, majority studies have been focusing on the spatial characteristics of numbers, e.g. whether numbers can elicit attentional shifts automatically. Several studies have found that small numbers shift spacial attention to the left, while large numbers shift spacial attention to the right (Calabria & Rossetti, 2005; Fias et al., 2001; Fischer et al., 2003). In bottom-up driven processing, posterior parietal cortex (PPC) play a key role. But when participants were told to image a right-to-left ruler before response, the SNARC effect would disappeared or even reversed (Ristic et al., 2006). The prevailing view is that number can elicit attentional shifts, but under the mediation of top-down driven processing. However, new emerging evidence contributed to this topic from a completely new angle, e.g. how attentional cues, such as encoding of spatial locations, might activate numerical re-presentations differently. Recently the studies from endogenous and exogenous paradigms in spa- cial attention cues, visuospacial priming cues, the special information in interoreceptor show that special attentional cues could activate numerical representations automatically: Firstly, comparing with endogenous, exogenous cue has more stable influence than endogenous cue on SNARC effect. In early processing, exogenous cue play a main role, then along with the SOAs (cue-target stimulus onset asynchrony) increased, endogenous cue take the advantage (Pan et al., 2009, 2010, 2011); Secondly, visuospacial and numerical have an interaction before selection stage, that is to say, right visuospacial priming cues activated faster response with large number, while left visuospacial priming cue activated fast response with small number in bottom-up driven way (Herrera & Macizo, 2011); In addition, body movement could be taken as special cue too. Head, eye or whole body move to left direction facilitated the generation of small number, while move to right direction facilitated the generation of large number (Hartmann et al., 2012; Loetscher et al., 2010; Loetscher et al., 2008). In terms of attentional cues activate numerical representations, a bottom-up driven processing deed exist in SNARC effect. By presenting literatures from abovementioned two perspectives of number elicit attention shift and attentional cues activate numerical representations, we try to perform a thorough review and analysis on the potential role of attention involved in SNARC via either a top-down- or a bottom-up-driven processing. Moreover, in cognitive control perspective, the interaction of top-down driven and bottom-up driven process- ing is discussed. The mechanism of SNARC effect may be the balance of proactive control and inactive control. Finally, some potential researches for this topic are also presented and discussed.
文章引用:葛慧, 程晓荣, 范炤 (2015). 空间–数字反应联合编码中的注意机制述评. 心理学进展, 5(10), 584-592. http://dx.doi.org/10.12677/AP.2015.510076

参考文献

[1] 刘超, 买晓琴, 傅小兰(2004). 不同注意条件下的空间–数字反应编码联合效应. 心理学报, 06期, 671-680.
[2] 潘运, 白学军, 沈德立(2010). 内源性注意和外源性注意条件下 SOA 变化对 SNARC 效应的影响. 西南大学学报(自然科学版), 10期, 165-170.
[3] 潘运, 全小山, 林伟民, 尚随峰(2011). 外源性注意不同线索提示比例对汉字数字 SNARC 效应的影响. 贵州师范大学学报: 自然科学版, 001期, 28-33.
[4] 潘运, 沈德立, 王杰(2009). 不同注意提示线索条件下汉字数字加工的 SNARC 效应. 心理与行为研究, 1期, 21-26.
[5] 徐雷, 唐丹丹, 陈安涛(2012). 主动性和反应性认知控制的权衡机制及影响因素. 心理科学进展, 007期, 1012-1022.
[6] 徐晓东, 刘昌(2006). 数字的空间性. 心理科学进展, 6期, 851-858.
[7] 张斌, 张智君, 蔡太生(2011). 工作记忆负荷对注意捕获的影响研究. 心理科学, 1期, 33-37.
[8] Anderson, J. R. (2009). Cognitive psychology and its implications. New York, NY :Macmillan
[9] Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in cognitive sciences, 16, 106-113.
http://dx.doi.org/10.1016/j.tics.2011.12.010
[10] Braver, T. S., Gray, J. R., & Burgess, G. C. (2007). Explaining the many varieties of working memory variation: Dual mechanisms of cognitive control. In A. R. A. Conway, C. Jarrold, M. J. Kane, A. Miyake, & J. N. Towse (Eds.), Variation in Working Memory (pp. 76-106). New York: Oxford University Press.
[11] Buschman, T. J., & Miller, E. K. (2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science, 315, 1860-1862.
[12] Calabria, M., & Rossetti, Y. (2005). Interference between number processing and line bisection: A methodology. Neuropsychologia, 43, 779-783.
http://dx.doi.org/10.1016/j.neuropsychologia.2004.06.027
[13] Castronovo, J., & Seron, X. (2007). Semantic numerical representation in blind subjects: The role of vision in the spatial format of the mental number line. The Quarterly Journal of Experimental Psychology, 60, 101-119.
http://dx.doi.org/10.1080/17470210600598635
[14] Chen, Q., & Verguts, T. (2010). Beyond the mental number line: A neural network model of number-space interactions. Cognitive Psychology, 60, 218-240.
http://dx.doi.org/10.1016/j.cogpsych.2010.01.001
[15] Dehaene, S. (2003). The neural basis of the Weber-Fechner law: A logarithmic mental number line. Trends in Cognitive Sciences, 7, 145-147.
http://dx.doi.org/10.1016/S1364-6613(03)00055-X
[16] Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122, 371-396.
http://dx.doi.org/10.1037/0096-3445.122.3.371
[17] Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487-506.
http://dx.doi.org/10.1080/02643290244000239
[18] Dormal, V., & Pesenti, M. (2013). Processing numerosity, length and duration in a three-dimensional Stroop-like task: Towards a gradient of processing automaticity? Psychological Research, 77, 116-127.
http://dx.doi.org/10.1007/s00426-012-0414-3
[19] Egeth, H. E., & Yantis, S. (1997). Visual attention: Control, re-presentation, and time course. Annual Review of Psychology, 48, 269-297.
http://dx.doi.org/10.1146/annurev.psych.48.1.269
[20] Fias, W., Lauwereyns, J., & Lammertyn, J. (2001). Irrelevant digits affect feature-based attention depending on the overlap of neural circuits. Cognitive Brain Research, 12, 415-423.
http://dx.doi.org/10.1016/S0926-6410(01)00078-7
[21] Fischer, M. H. (2006). The future for SNARC could be stark…. Cortex, 42, 1066-1068.
http://dx.doi.org/10.1016/S0010-9452(08)70218-1
[22] Fischer, M. H., Castel, A. D., Dodd, M. D., & Pratt, J. (2003). Perceiving numbers causes spatial shifts of attention. Nature Neuroscience, 6, 555-556.
http://dx.doi.org/10.1038/nn1066
[23] Fischer, M. H., Mills, R. A., & Shaki, S. (2010). How to cook a SNARC: Number placement in text rapidly changes spatial- numerical associations. Brain and Cognition, 72, 333-336.
http://dx.doi.org/10.1016/j.bandc.2009.10.010
[24] Fischer, M. H., Shaki, S., & Cruise, A. (2009). It takes just one word to quash a SNARC. Experimental Psychology, 56, 361- 366.
http://dx.doi.org/10.1027/1618-3169.56.5.361
[25] Gevers, W., Ratinckx, E., De Baene, W., & Fias, W. (2006). Further evidence that the SNARC effect is processed along a dual-route architecture. Experimental Psychology, 53, 58-68.
http://dx.doi.org/10.1027/1618-3169.53.1.58
[26] Gottlieb, J. (2007). From thought to action: The parietal cortex as a bridge between perception, action, and cognition. Neuron, 53, 9-16.
http://dx.doi.org/10.1016/j.neuron.2006.12.009
[27] Grade, S., Lefèvre, N., & Pesenti, M. (2013). Influence of gaze observation on random number generation. Experimental Psychology, 60, 122-130.
http://dx.doi.org/10.1027/1618-3169/a000178
[28] Hartmann, M., Grabherr, L., & Mast, F. W. (2012). Moving along the mental number line: Interactions between whole-body motion and numerical cognition. Journal of Experimental Psychology: Human Perception and Performance, 38, 1416- 1427.
http://dx.doi.org/10.1037/a0026706
[29] Herrera, A., & Macizo, P. (2011). When symbolic spatial cues go before numbers. Psicológica, 32, 1-12.
[30] Hyde, D. C., & Spelke, E. S. (2009). All numbers are not equal: An electrophysiological investigation of small and large number repre-sentations. Journal of Cognitive Neuroscience, 21, 1039-1053.
http://dx.doi.org/10.1162/jocn.2009.21090
[31] Loetscher, T., Bockisch, C. J., Nicholls, M. E., & Brugger, P. (2010). Eye position predicts what number you have in mind. Current Biology, 20, R264-R265.
http://dx.doi.org/10.1016/j.cub.2010.01.015
[32] Loetscher, T., Schwarz, U., Schubiger, M., & Brugger, P. (2008). Head turns bias the brain’s internal random generator. Current Biology, 18, R60-R62.
http://dx.doi.org/10.1016/j.cub.2007.11.015
[33] Nicholls, M. E., & McIlroy, A. M. (2010). Spatial cues affect mental number line bisections. Experimental Psychology (formerly Zeitschrift für Experimentelle Psychologie), 57, 315-319.
http://dx.doi.org/10.1027/1618-3169/a000037
[34] Nuerk, H. C., Bauer, F., Krummenacher, J., Heller, D., & Willmes, K. (2005). The power of the mental number line: How the magnitude of unattended numbers affects performance in an Eriksen task. Psychology Science, 47, 34-50.
[35] Pfister, R., Schroeder, P. A., & Kunde, W. (2013). SNARC struggles: Instant control over spatial-numerical associations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39, 1953-1958.
http://dx.doi.org/10.1037/a0032991
[36] Piazza, M., Mechelli, A., Butterworth, B., & Price, C. J. (2002). Are sub-itizing and counting implemented as separate or functionally overlapping processes? Neuroimage, 15, 435-446.
http://dx.doi.org/10.1006/nimg.2001.0980
[37] Ristic, J., Wright, A., & Kingstone, A. (2006). The number line effect reflects top-down control. Psychonomic Bulletin & Review, 13, 862-868.
http://dx.doi.org/10.3758/BF03194010
[38] Sarter, M., Givens, B., & Bruno, J. P. (2001). The cognitive neuroscience of sustained attention: Where top-down meets bottom-up. Brain Research Reviews, 35, 146-160.
http://dx.doi.org/10.1016/S0165-0173(01)00044-3
[39] Shaki, S., & Fischer, M. H. (2008). Reading space into numbers—A cross-linguistic comparison of the SNARC effect. Cognition, 108, 590-599.
http://dx.doi.org/10.1016/j.cognition.2008.04.001
[40] Vuokko, E., Niemivirta, M., & Helenius, P. (2012). Cortical activation patterns during subitizing and counting. Brain Research, 1497, 40-52.
[41] Zacharias, G., & Young, L. (1981). Influence of combined visual and vestibular cues on human perception and control of horizontal rotation. Experimental Brain Research, 41, 159-171.
http://dx.doi.org/10.1007/BF00236605