大伙房水库土壤汞动态与污染特征研究
Dynamic and Pollution Characteristics of Soil Mercury of Dahuofang Reservoir Research
DOI: 10.12677/AEP.2015.55019, PDF, HTML, XML,  被引量 下载: 2,548  浏览: 9,385  科研立项经费支持
作者: 张 庆, 田思思, 周贵宇, 梁 雷*:辽宁大学环境学院,辽宁 沈阳
关键词: 大伙房水库土壤汞污染特征风险评价Dahuofang Reservoir Soil Mercury Pollution Characteristics Risk Assessment
摘要: 为了解大伙房水库汞污染现状和环境风险,选择10个采样点,采集了30个土壤样品,20个水体样品,30个空气样品,分析不同区域土壤、水体和大气中的总汞含量及分布,并采用地累积指数法和潜在生态风险指数法对比探讨了土壤总汞污染现状和环境风险,分析其生物可利用性及其潜在风险,探究大气汞与土壤汞富集的关系。结果表明,大伙房水库土壤中的汞平均含量分别为27.76 μg/kg,变异系数为69.32,最大值为82.47 μg/kg,最小值为12.49 μg/kg;大伙房水库采集水中的汞平均含量分别为19.87 μg/kg,变异系数为71.35,最大值为53.82 μg/kg,最小值为2.92 μg/kg。向大气释放汞的年排放通量17.80~62.47 μg/m2/h,平均37.76 μg/m2/h。土壤汞含量与大气汞浓度的相关系数为0.81** (P < 0.01),相关显著,土壤汞富集对大气汞污染的贡献较大。从汞的空间分布表明,社河流域汞金属污染较低,浑河苏子河流域沉积物汞金属含量较高,水中汞含量较低。地累积指数的土壤汞污染评价和潜在生态危害指数的土壤汞生态风险评价,两种评价结果表明大伙房水库污染水平和生态风险都较低,大气汞污染对土壤汞富集的贡献较大。
Abstract: To explore the pollution situation and the environmental risk of mercury in Dahuofang reservoir, we choose 10 sampling points, collected 30 soil samples, 20 water samples and 30 air samples to analyze the contents and distribution of mercury in soil, water and air in different areas. We discuss the pollution status and environmental risks of mercury in soil, analyze the biological availability and potential risks and explore the relationship between the atmospheric mercury and the soil mercury enrichment by the geoaccumulation index method and potential ecological risk index method. The results indicated that the average content of mercury in the soil of Dahuofang reser-voir were 27.76 μg/kg, the variation coefficient was 69.32, The maximum was 82.47 μg/kg, the minimum was 12.49 μg/kg; The average content of mercury in the collected water of Dahuofang reservoir were 19.87 μg/kg, The variation coefficient was 71.35, the maximum was 53.82 μg/kg, the minimum was 2.92 μg/kg. The released mercury flux into the atmosphere was 17.80 - 62.47 μg/m2/h, the average was 37.76 μg/m2/h. The correlation coefficient between mercury content in soil and the mercury concentration in atmospheric was 0.81** (P < 0.01), they were significantly correlated. The soil mercury enrichment contributed greatly to atmospheric mercury pollution. According to the spatial distribution of mercury, it indicated that the river was slightly polluted. The mercury content in sediment of Hun River and Suzi River was higher, and the content of mer-cury in water was lower. The evaluation of soil mercury pollution by geoaccumulation index method and the soil mercury ecological risk assessment by potential ecological risk index method. The results showed that the pollution level and the ecological risk of Dahuofang reservoir were low, atmospheric mercury pollution contributed great to soil mercury enrichment.
文章引用:张庆, 田思思, 周贵宇, 梁雷. 大伙房水库土壤汞动态与污染特征研究[J]. 环境保护前沿, 2015, 5(5): 145-154. http://dx.doi.org/10.12677/AEP.2015.55019

参考文献

[1] Huguet, L., Castelle, S., Schäfer, J., et al. (2010) Mercury methylation rates of biofilm and plankton microorganisms from a hydroelectric reservoir in French Guiana. Science of the Total Environment, 408, 1338-1348.
http://dx.doi.org/10.1016/j.scitotenv.2009.10.058
[2] Khoshnamvand, M., Kaboodvandpour, S. and Ghiasi, F. (2013) A comparative study of accumulated total mercury among white muscle, red muscle and liver tissues of common carp and silver carp from the Sanandaj Gheshlagh Reservoir in Iran. Chemosphere, 90, 1236-1241.
http://dx.doi.org/10.1016/j.chemosphere.2012.09.061
[3] Feng, X.B., Bai, W.Y., Shang, L.H., et al. (2011) Mercury speciation and distribution in Aha Reservoir which was contaminated by coal mining activities in Guiyang, Guizhou, China. Applied Geochemistry, 26, 213-221.
http://dx.doi.org/10.1016/j.apgeochem.2010.11.021
[4] He, T.R., Feng, X.B., Guo, Y.N., et al. (2008) The impact of eutrophication on the biogeochemical cycling of mercury species in a reservoir: A case study from Hongfeng Reservoir, Guizhou, China. Environmental Pollution, 154, 56-67.
http://dx.doi.org/10.1016/j.envpol.2007.11.013
[5] Bravo, A.G., Loizeau, J.L., Bouchet, S., et al. (2010) Mercury human exposure through fish consumption in a reservoir contaminated by a chlor-alkali plant: Babeni reservoir (Romania). Environmental Science and Pollution Research, 17, 1422-1432.
http://dx.doi.org/10.1007/s11356-010-0328-9
[6] Atta, A., Voegborlo, R.B. and Agorku, E.S. (2012) Total mercury distribution in different tissues of six species of freshwater fish from the Kpong hydroelectric reservoir in Ghana. Environmental Monitoring and Assessment, 184, 3259-3265.
http://dx.doi.org/10.1007/s10661-011-2186-4
[7] Jacksion, T.A. (1988) The problem in recently formed reser-voirs of northern Manitoba (Canada): Effects of impoundment and other factors on the product ion of methyl mercury by microorganisms in sediments. Canadian Journal of Fisheries and Aquatic Sciences, 45, 97-121.
http://dx.doi.org/10.1139/f88-012
[8] Meister, C.I., et al. (1979) Source and level of mercury in a new im-poundment. Journal (American Water Works Association), 71, 574-576.
[9] Gray, J.E. and Hines, M.E. (2009) Bio-geochemical mercury methylation influenced by reservoir eutrophication, Salmon Falls Creekr Reservoir, Idaho, USA. Chemical Geology, 258, 157-167.
http://dx.doi.org/10.1016/j.chemgeo.2008.09.023
[10] Wang, Q., Feng, X.B., Yang, Y.F., et al. (2011) Spatial and temporal variations of total and methylmercury concentrations in plankton from a mercury-contaminated and eutrophic reservoir in Guizhou Province, China. Environmental Toxicology and Chemistry, 30, 2739-2747.
http://dx.doi.org/10.1002/etc.696
[11] Ahn, M.C., Kim, B., Holsen, T.M., Yi, S.M. and Han, Y.J. (2010) Factors influencing concentrations of dissolved gaseous mercury (DGM) and total mercury (TM) in an artificial reservoir. En-vironmental Pollution, 158, 347-355.
http://dx.doi.org/10.1016/j.envpol.2009.08.036
[12] 王健康, 高博, 周怀东, 陆瑾, 王雨春, 殷淑华, 郝红, 袁浩 (2012) 三峡库区蓄水运用期表层沉积物重金属污染及其潜在生态风险评价. 环境科学, 5, 1693-1699.
[13] 吉芳英, 王图锦, 胡学斌, 何强, 叶姜瑜, 黎司, 曹琳 (2009) 三峡库区消落区水体–沉积物重金属迁移转化特征. 环境科学, 12, 3481-3487.
[14] 王业春, 雷波, 杨三明, 张晟 (2012) 三峡库区消落带不同水位高程土壤重金属含量及污染评价. 环境科学, 2, 612-617.
[15] 张雷, 秦延文, 赵艳明, 马应群, 曹伟, 贾静 (2012) 三峡澎溪河回水区消落带岸边土壤重金属污染分布特征. 环境科学学报, 12, 3021-3029.
[16] 储立民, 常超, 谢宗强, 熊高明 (2011) 三峡水库蓄水对消落带土壤重金属的影响. 土壤学报, 1, 192-196.
[17] 贺斌, 郭海英 (2010) 大伙房水库底质重金属污染分析. 现代农业科技, 5, 259-260.
[18] 齐晓君, 王恩德, 付建飞 (2008) 大伙房水库底质重金属污染评价. In: 中国环境科学学会, Ed., 中国环境科学学会学术年会优秀论文集(上卷), 中国环境科学学会, 北京, 480-483.
[19] 单孝全, 王仲文 (2001) 形态分析与生物可给性. 分析试验室, 6, 103-108.
[20] 靳永卿 (2007) 汞的形态分析及汞环境污染的评价. 硕士论文, 陕西师范大学, 西安.
[21] 赵健 (2011) 长江口滨岸潮滩汞的环境地球化学研究. 博士论文, 华东师范大学, 上海.
[22] Brosset, C. and Iverfeldt, Å. (1989) Interaction of solid gold with mercury in ambient air. Water, Air, and Soil Pollution, 43, 147-168.
http://dx.doi.org/10.1007/BF00175590
[23] Dumarey, R., Dams, R. and Hoste, J. (1985) Comparison of the col-lection and adsorption efficiency of activated charcoal, silver, and gold for the determination of vapor phase atmospheric mercury. Analytical Chemistry, 57, 2638-2643.
http://dx.doi.org/10.1021/ac00290a047
[24] 丁振华, 王文华 (2003) 不同消解方法对土壤样品中汞含量测定的影响. 生态环境, 1, 1-3.
[25] Temmerman, E., Vandecasteele, C., Vermeir, G., Leyman, R. and Dams, R. (1990) Sensitive determination of gaseous mercury in air by cold vapour atomic fluorescence spectrometry after amalgamation. Analytica Chimica Acta, 236, 371-376.
[26] Müller, G. (1969) Index of geo ac cumulation in sediments of the Rhine River. GeoJournal, 2, 108-118.
[27] 唐将, 钟远平, 王力 (2008) 三峡库区土壤重金属背景值研究. 中国生态农业学报, 4, 848-852.
[28] 国家环境保护局 (1995) 土壤环境质量标准(GB15618-1995). 中国环境科学出版社, 北京.
[29] 张婧, 王淑秋, 谢琰, 王幸福, 盛向军, 陈吉平 (2008) 辽河水系表层沉积物中重金属分布及污染特征研究. 环境科学, 9, 2413-2418.