植物应答镁营养胁迫机理的研究进展
The Research Development of the Response Mechanisms to Magnesium Stresses in Plants
DOI: 10.12677/BR.2015.45012, PDF, HTML, XML,  被引量 下载: 3,195  浏览: 14,877  科研立项经费支持
作者: 盛翊佳, 丁亚文, 傅媛烨:浙江理工大学生命科学学院,浙江 杭州;杨东风, 梁宗锁, 郭万里*:浙江理工大学生命科学学院,浙江 杭州;浙江省植物次生代谢调控重点实验室,浙江 杭州
关键词: 植物缺镁镁毒害镁离子转运体信号传导离子互作Plant Magnesium Deficiency Magnesium Toxicity Magnesium Transporter Signaling Ion Interaction
摘要: 镁(Magnesium, Mg)是植物生长发育必需的重要营养元素之一,也是细胞中最丰富的游离二价阳离子。人们近期发现:不同时期谷物中的镁含量随时间呈下降趋势,作物和牧草等相继出现了缺镁症;另一方面,由于地球表面部分地区土壤镁含量过高,抑制生物的正常生长发育,导致镁中毒症状。但是,与氮、磷、钾等元素相比,植物应答镁营养胁迫的研究往往被人们遗忘,研究相对滞后。因此,本综述主要从镁胁迫条件下植物生理、信号传递、镁离子转运体,以及镁与其他离子的互作等方面来阐述植物应答镁营养胁迫的研究进展,以期引起人们的重视,推动植物镁胁迫机理的研究。
Abstract: Magnesium (Mg), one of the most core nutrients in plant growth and development, is the most ab-undant free divalent cation in cells. Shockingly, the Mg content in grains has presented a decrease over time in different periods, and some crops and forages appear Mg deficient symptoms. On the other hand, high Mg content in some soils inhibits plant growth and development, which leads to the Mg toxic symptoms. However, comparing with other nutrients, such as nitrogen, phosphorus or potassium, the responding mechanisms of Mg stress conditions in plants are known little today. Therefore, we integrate the research development recently on plant physiology, magnesium transporters, signaling responding to Mg stresses, and the interactions between Mg and other ions. This review is to attract people’s attention and promote the study of the responding mechanisms of magnesium stresses in plants.
文章引用:盛翊佳, 丁亚文, 傅媛烨, 杨东风, 梁宗锁, 郭万里. 植物应答镁营养胁迫机理的研究进展[J]. 植物学研究, 2015, 4(5): 97-106. http://dx.doi.org/10.12677/BR.2015.45012

参考文献

[1] Cowan, J.A. (2002) Structural and catalytic chemistry of magnesium-dependent enzymes. Biometals, 15, 225-235.
http://dx.doi.org/10.1023/A:1016022730880
[2] Cong, Y., Luo, D., Chen, K., Jiang, L. and Guo, W. (2012) The development of magnesium transport systems in organisms. Journal of Agricultural Biotechnology, 20, 837-848.
[3] Shaul, O. (2002) Magnesium transport and function in plants: The tip of the iceberg. Biometals, 15, 307-321.
http://dx.doi.org/10.1023/A:1016091118585
[4] Karley, A.J. and White, P.J. (2009) Moving cationic minerals to edible tissues: Potassium, magnesium, calcium. Current Opinion in Plant Biology, 12, 291-298.
http://dx.doi.org/10.1016/j.pbi.2009.04.013
[5] Guo, W.L., Chen, S.N., Hussain, N., Cong, Y.X,, Liang, Z.S. and Chen, K.M. (2015) Magnesium stress signaling in plant: Just a beginning. Plant Signaling & Behavior, 10, Article ID: e992287.
http://dx.doi.org/10.4161/15592324.2014.992287
[6] Maguire, M.E. (2006) Magnesium transporters: Properties, regulation and structure. Frontiers in Bioscience, 11, 3149- 3163.
http://dx.doi.org/10.2741/2039
[7] Hermans, C., Vuylsteke, M., Coppens, F., Craciun, A., Inzé, D. and Verbruggen, N. (2010) Early transcriptomic changes induced by magnesium deficiency in Arabidopsis thaliana reveal the alteration of circadian clock gene expression in roots and the triggering of abscisic acid-responsive genes. New Phytologist, 187, 119-131.
http://dx.doi.org/10.1111/j.1469-8137.2010.03258.x
[8] Visscher, A.M., Paul, A.L., Kirst, M., Guy, C.L., Schuerger, A.C. and Ferl, R.J. (2010) Growth performance and root transcriptome remodeling of Arabidopsis in re-sponse to Mars-like levels of magnesium sulfate. PLoS ONE, 5, e12348.
http://dx.doi.org/10.1371/journal.pone.0012348
[9] Guo, W.L., Cong, Y.X., Hussain, N., Wang, Y., Liu, Z.L., Jiang, L.X., Liang, Z.S. and Chen, K.M. (2014) The remodeling of seedling development in response to long-term magnesium toxicity and regulation by ABA-DELLA signaling in Arabidopsis. Plant & Cell Physiology, 55, 1713-1726.
http://dx.doi.org/10.1093/pcp/pcu102
[10] Marschner, H. (2012) Mineral nutrition of higher plants. 3rd Edition. Academic, London.
[11] Chou, T.S., Chao, Y.Y., Huang, W.D., Hong, C.Y. and Kao, C.H. (2011) Effect of magnesium deficiency on antioxidant status and cadmium toxicity in rice seedlings. Journal of Plant Physiology, 168, 1021-1030.
http://dx.doi.org/10.1016/j.jplph.2010.12.004
[12] Sun, X., Kay, A.D., Kang, H., Small, G.E., Liu, G.F., Zhou, X., Yin, S. and Liu, C.J. (2013) Correlated biogeographic variation of magnesium across trophic levels in a terrestrial food chain. PLoS ONE, 8, e78444.
http://dx.doi.org/10.1371/journal.pone.0078444
[13] Hermans, C., Conn, S.J., Chen, J.G., Xiao, Q.Y. and Ver-bruggen, N. (2013) An update on magnesium homeostasis mechanisms in plants. Metallomics: Integrated Biometal Science, 5, 1170-1183.
http://dx.doi.org/10.1039/c3mt20223b
[14] Hermans, C. and Verbruggen, N. (2005) Phy-siological characterization of Mg deficiency in Arabidopsis thaliana. Journal of Experimental Botany, 56, 2153-2161.
http://dx.doi.org/10.1093/jxb/eri215
[15] Hermans, C., Vuylsteke, M., Coppens, F., Cristescu, S.M., Harren, F.J., Inze, D. and Verbruggen, N. (2010) Systems analysis of the responses to long-term magnesium deficiency and restora-tion in Arabidopsis thaliana. New Phytologist, 187, 132-144.
http://dx.doi.org/10.1111/j.1469-8137.2010.03257.x
[16] Cakmak, I., Hengeler, C. and Marschner, H. (1994) Changes in phloem export of sucrose in leaves in response to phosphorus, potassium and magnesium deficiency in bean plants. Journal of Experimental Botany, 45, 1251-1257.
http://dx.doi.org/10.1093/jxb/45.9.1251
[17] Cakmak, I. and Kirkby, E.A. (2008) Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiologia Plantarum, 133, 692-704.
http://dx.doi.org/10.1111/j.1399-3054.2007.01042.x
[18] Igamberdiev, A.U. and Kleczkowski, L.A. (2001) Im-plications of adenylate kinase-governed equilibrium of adenylates on contents of free magnesium in plant cells and compartments. The Biochemical Journal, 360, 225-231.
http://dx.doi.org/10.1042/bj3600225
[19] Getz, H.P. and Klein, M. (1995) The vacuolar ATPase of red beet storage tissue: Electron microscopic demonstration of the “head-and-stalk” structure. Botanica Acta, 108, 14-23.
http://dx.doi.org/10.1111/j.1438-8677.1995.tb00826.x
[20] Hermans, C., Bourgis, F., Faucher, M., Strasser, R.J., Delrot, S. and Verbruggen, N. (2005) Magnesium deficiency in sugar beets alters sugar partitioning and phloem loading in young mature leaves. Planta, 220, 541-549.
http://dx.doi.org/10.1007/s00425-004-1376-5
[21] Cakmak, I. and Yazici, A. (2010) Magnesium: A forgotten element in crop production. Better Crops, 94, 23-25.
[22] Chen, L., Wu, X., Huang, H., Liu, X.Q., Liu, C., Zheng, L. and Hong, F.S. (2009) Effects of Mg2+ on spectral characteristics and photosynthetic functions of spinach photosystem II. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 72, 343-347.
http://dx.doi.org/10.1016/j.saa.2008.10.012
[23] Ze, Y.G., Yin, S.T., Ji, Z., Luo, L.Y., Liu, C. and Hong, F.S. (2009) Influences of magnesium deficiency and cerium on antioxidant system of spinach chloroplasts. BioMetals, 22, 941-949.
http://dx.doi.org/10.1007/s10534-009-9246-z
[24] Niu, Y.F., Chai, R.S., Liu, L.J., Jin, G.L., Liu, M., Tang, C.X. and Zhang, Y.S. (2014) Magnesium availability regulates the development of root hairs in Arabidopsis tha-liana (L.) Heynh. Plant, Cell & Environment, 37, 2795-2813.
http://dx.doi.org/10.1111/pce.12362
[25] Kobayashi, N.I., Saito, T., Iwata, N., Ohmae, Y., Iwata, R., Tanoi, K. and Nakanishi, T.M. (2013) Leaf senescence in rice due to magnesium deficiency mediated defect in transpiration rate before sugar accumulation and chlorosis. Physiologia Plantarum, 148, 490-501.
http://dx.doi.org/10.1111/j.1399-3054.2012.12003.x
[26] Li, L.G., Tutone, A.F., Drummond, R.S., Gardner, R.C. and Luan, S. (2001) A novel family of magnesium transport genes in Arabidopsis. The Plant Cell, 13, 2761-2775.
http://dx.doi.org/10.1105/tpc.13.12.2761
[27] Shaul, O., Hilgemann, D.W., de-Almeida-Engler, J., Van Montagu, M., Inze, D. and Galili, G. (1999) Cloning and characterization of a novel Mg2+/H+ exchanger. The EMBO Journal, 18, 3973-3980.
http://dx.doi.org/10.1093/emboj/18.14.3973
[28] David-Assael, O., Berezin, I., Shoshani-Knaani, N., Saul, H., Mizrachy-Dagri, T., Chen, J.X., Brook, E. and Shaul, O. (2006) AtMHX is an auxin and ABA-regulated transporter whose expression pattern suggests a role in metal homeostasis in tissues with photosynthetic potential. Functional Plant Biology, 33, 661-672.
http://dx.doi.org/10.1071/FP05295
[29] Akua, T., Berezin, I. and Shaul, O. (2010) The leader intron of AtMHX can elicit, in the absence of splicing, low-level intron-mediated enhancement that depends on the internal intron sequence. BMC Plant Biology, 10, 93.
http://dx.doi.org/10.1186/1471-2229-10-93
[30] David-Assael, O., Saul, H., Saul, V., Mizrachy-Dagri, T., Berezin, I., Brook, E. and Shaul, O. (2005) Expression of AtMHX, an Arabidopsis vacuolar metal transporter, is repressed by the 5’ untranslated region of its gene. Journal of Experimental Botany, 56, 1039-1047.
http://dx.doi.org/10.1093/jxb/eri097
[31] Berezin, I., Brook, E., Mizrahi, K., Mizrachy-Dagry, T., Elazar, M., Zhou, S. and Shaul, O. (2008) Overexpression of the vacuolar metal/proton exchanger AtMHX in tomato causes decreased cell expansion and modifications in the mineral content. Functional Plant Biology, 35, 15-25.
http://dx.doi.org/10.1071/FP07152
[32] Gaash, R., Elazar, M., Mizrahi, K., Avramov-Mor, M., Berezin, I. and Shaul, O. (2013) Phylogeny and a structural model of plant MHX transporters. BMC Plant Biology, 13, 75.
http://dx.doi.org/10.1186/1471-2229-13-75
[33] Christopher, D., Borsics, T., Yuen, C., Ullmer, W., An-deme-Ondzighi, C., Andres, M., Kang, B.-H. and Staehelin, L.A. (2007) The cyclic nucleotide gated cation channel AtCNGC10 traffics from the ER via Golgi vesicles to the plasma membrane of Arabidopsis root and leaf cells. BMC Plant Biology, 7, 48.
http://dx.doi.org/10.1186/1471-2229-7-48
[34] Guo, K.M., Babourina, O., Christopher, D.A., Borsic, T. and Rengel, Z. (2010) The cyclic nucleotide-gated channel AtCNGC10 transports Ca2+ and Mg2+ in Arabidopsis. Physiologia Plantarum, 139, 303-312.
[35] Gebert, M., Meschenmoser, K., Svidova, S., Weghuber, J., Schweyen, R., Eifler, K., Lenz, H., Weyand, K. and Knoop, V. (2009) A root-expressed magnesium transporter of the MRS2/MGT gene family in Arabidopsis thaliana allows for growth in low-Mg2+ environments. The Plant Cell, 21, 4018-4030.
http://dx.doi.org/10.1105/tpc.109.070557
[36] Deng, W., Luo, K.M., Li, D.M., Zheng, X.L., Wei, X.Y., Smith, W., Thammina, C., Lu, L.T., Li, Y. and Pei, Y. (2006) Overexpression of an Arabidopsis magnesium transport gene, AtMGT1, in Nicotiana benthamiana confers Al tolerance. Journal of Experimental Botany, 57, 4235-4243.
http://dx.doi.org/10.1093/jxb/erl201
[37] Lenz, H., Dombinov, V., Dreistein, J., Reinhard, M.R., Gebert, M. and Knoop, V. (2013) Magnesium deficiency phenotypes upon multiple knockout of Arabidopsis thaliana MRS2 clade B genes can be ameliorated by concomitantly reduced calcium supply. Plant & Cell Physiology, 54, 1118-1131.
http://dx.doi.org/10.1093/pcp/pct062
[38] Chen, Z.C., Yamaji, N., Motoyama, R., Nagamura, Y. and Ma, J.F. (2012) Up-regulation of a magnesium transporter gene OsMGT1 is required for conferring aluminum tolerance in rice. Plant Physiology, 159, 1624-1633.
http://dx.doi.org/10.1104/pp.112.199778
[39] Mao, D.D., Chen, J., Tian, L.F., Liu, Z.H., Yang, L., Tang, R.J., Li, J., Lu, C.Q., Yang, Y.H., Shi, J.S., Chen, L.B., Li, D.P. and Luan, S. (2014) Arabidopsis transporter MGT6 mediates magnesium uptake and is required for growth under magnesium limitation. The Plant Cell, 26, 2234-2248.
http://dx.doi.org/10.1105/tpc.114.124628
[40] Conn, S.J., Conn, V., Tyerman, S.D., Kaiser, B.N., Leigh, R.A. and Gilliham, M. (2011) Magnesium transporters, MGT2/MRS2-1 and MGT3/MRS2-5, are important for magnesium partitioning within Arabidopsis thaliana mesophyll vacuoles. New Phytologist, 190, 583-594.
http://dx.doi.org/10.1111/j.1469-8137.2010.03619.x
[41] Waters, B.M. and Grusak, M.A. (2008) Quantitative trait locus mapping for seed mineral concentrations in two Arabidopsis thaliana recombinant inbred populations. New Phy-tologist, 179, 1033-1047.
http://dx.doi.org/10.1111/j.1469-8137.2008.02544.x
[42] Vreugdenhil, D., Aarts, M.G.M., Koornneef, M., Ne-lissen, H. and Ernst, W.H.O. (2004) Natural variation and QTL analysis for cationic mineral content in seeds of Ara-bidopsis thaliana. Plant, Cell & Environment, 27, 828-839.
http://dx.doi.org/10.1111/j.1365-3040.2004.01189.x
[43] Li, L.G., Sokolov, L.N., Yang, Y.H., Li, D.P., Ting, J., Pandy, G.K. and Luan, S. (2008) A mitochondrial magnesium transporter functions in Arabidopsis pollen development. Molecular Plant, 1, 675-685.
http://dx.doi.org/10.1093/mp/ssn031
[44] Chen, J., Li, L.G., Liu, Z.H., Yuan, Y.J., Guo, L.L., Mao, D.D., Tian, L.F., Chen, L.B., Luan, S. and Li, D.P. (2009) Magnesium transporter AtMGT9 is essential for pollen development in Arabidopsis. Cell Research, 19, 887-898.
http://dx.doi.org/10.1038/cr.2009.58
[45] Drummond, R.S.M., Tutone, A., Li, Y.C. and Gardner, R.C. (2006) A putative magnesium transporter AtMRS2-11 is localized to the plant chloroplast envelope membrane system. Plant Science, 170, 78-89.
http://dx.doi.org/10.1016/j.plantsci.2005.08.018
[46] Horie, T., Brodsky, D.E., Costa, A., Kaneko, T., Lo Schiavo, F., Katsuhara, M. and Schroeder, J.I. (2011) K+ transport by the OsHKT2;4 transporter from rice with atypical Na+ transport properties and competition in permeation of K+ over Mg2+ and Ca2+ ions. Plant Physiology, 156, 1493-1507.
http://dx.doi.org/10.1104/pp.110.168047
[47] Bradshaw, H.D. (2005) Mutations in CAX1 produce phenotypes characteristic of plants tolerant to serpentine soils. New Phytologist, 167, 81-88.
http://dx.doi.org/10.1111/j.1469-8137.2005.01408.x
[48] Turner, T.L., Bourne, E.C., Von Wettberg, E.J., Hu, T.T. and Nuzhdin, S.V. (2010) Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nature Genetics, 42, 260-263.
http://dx.doi.org/10.1038/ng.515
[49] Gailing, O., Macnair, M.R. and Bachmann, K. (2004) QTL mapping for a trade-off between leaf and bud production in a recombinant inbred population of Microseris douglasii and M. bigelovii (Asteraceae, Lactuceae): A potential preadaptation for the colonization of serpentine soils. Plant Biology, 6, 440-446.
http://dx.doi.org/10.1055/s-2004-817958
[50] Achard, P., Cheng, H., De Grauwe, L., Decat, J., Schoutteten, H., Moritz, T., Van Der Straeten, D., Peng, J.R. and Harberd, N.P. (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science, 311, 91-94.
http://dx.doi.org/10.1126/science.1118642
[51] Colebrook, E.H., Thomas, S.G., Phillips, A.L. and Hedden, P. (2014) The role of gibberellin signalling in plant responses to abiotic stress. Journal of Experimental Biology, 217, 67-75.
http://dx.doi.org/10.1242/jeb.089938
[52] Mogami, J., Fujita, Y., Yoshida, T., Tsukiori, Y., Nakagami, H., Nomura, Y., Fujiwara, T., Nishida, S., Yanagisawa, S., Ishida, T., Takahashi, F., Morimoto, K., Kidokoro, S., Mizoi, J., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2015) Two distinct families of protein kinases are required for plant growth under high external Mg2+ concentrations in Arabidopsis. Plant Physiology, 167, 1039-1057.
http://dx.doi.org/10.1104/pp.114.249870
[53] Gao, C.J., Zhao, Q. and Jiang, L.W. (2015) Vacuoles protect plants from high magnesium stress. Proceedings of the National Academy of Sciences of the United States of America, 112, 2931-2932.
http://dx.doi.org/10.1073/pnas.1501318112
[54] Shabala, S. and Hariadi, Y. (2005) Effects of magnesium availa-bility on the activity of plasma membrane ion transporters and light-induced responses from broad bean leaf mesophyll. Planta, 221, 56-65.
http://dx.doi.org/10.1007/s00425-004-1425-0
[55] Ze, Y.G., Zhou, M., Luo, L.Y., Ji, Z., Liu, C., Yin, S.T., Duan, Y.M., Li, N. and Hong, F.S. (2009) Effects of cerium on key enzymes of carbon assimilation of spinach under magne-sium deficiency. Biological Trace Element Research, 131, 154-164.
http://dx.doi.org/10.1007/s12011-009-8354-5
[56] Hong, F.S., Wei, Z.G. and Zhao, G.W. (2002) Mechanism of lanthanum effect on chlorophyll of spinach. Science in China Series C: Life Sciences, 45, 166-176.
http://dx.doi.org/10.1360/02yc9019
[57] Lock, K., Criel, P., De Schamphelaere, K.A., Van Eeckhout, H. and Janssen, C.R. (2007) Influence of calcium, magnesium, sodium, potassium and pH on copper toxicity to barley (Hor-deum vulgare). Ecotoxicology and Environmental Safety, 68, 299-304.
http://dx.doi.org/10.1016/j.ecoenv.2006.11.014
[58] Kopittke, P.M., Kinraide, T.B., Wang, P., Blarney, F.P.C., Reichman, S.M. and Menzies, N.W. (2011) Alleviation of Cu and Pb rhizotoxicities in cowpea (Vigna unguiculata) as related to ion activities at root-cell plasma membrane surface. Environmental Science & Technology, 45, 4966-4973.
http://dx.doi.org/10.1021/es1041404
[59] Chen, B.C., Ho, P.C. and Juang, K.W. (2013) Alleviation effects of magnesium on copper toxicity and accumulation in grapevine roots evaluated with biotic ligand models. Ecotoxicology, 22, 174-183.
http://dx.doi.org/10.1007/s10646-012-1015-z
[60] Juang, K.W., Lee, Y.I., Lai, H.Y. and Chen, B.C. (2014) In-fluence of magnesium on copper phytotoxicity to and accumulation and translocation in grapevines. Ecotoxicology and Environmental Safety, 104, 36-42.
http://dx.doi.org/10.1016/j.ecoenv.2014.02.008
[61] Saleh, A.A.H., El-Meleigy, S.A., Ebad, F.A., Helmy, M.A., Jentschke, G. and Godbold, D.L. (1999) Base cations ameliorate Zn toxicity but not Cu toxicity in sugar beet (Beta vulgaris). Journal of Plant Nutrition and Soil Science, 162, 275-279.
http://dx.doi.org/10.1002/(SICI)1522-2624(199906)162:3<275::AID-JPLN275>3.0.CO;2-Z
[62] Le, T.T.Y., Peijnenburg, W.J.G.M., Hendriks, A.J. and Vijver, M.G. (2012) Predicting effects of cations on copper toxicity to lettuce (Lactuca sativa) by the biotic ligand model. Environmental Toxicology and Chemistry, 31, 355-359.
http://dx.doi.org/10.1002/etc.736
[63] Kashem, M.D.A. and Kawai, S. (2007) Alleviation of cadmium phytotoxicity by magnesium in Japanese mustard spinach. Soil Science & Plant Nutrition, 53, 246-251.
http://dx.doi.org/10.1111/j.1747-0765.2007.00129.x
[64] Hermans, C., Chen, J.G., Coppens, F., Inzé, D. and Verbruggen, N. (2011) Low magnesium status in plants enhances tolerance to cadmium exposure. New Phytologist, 192, 428-436.
http://dx.doi.org/10.1111/j.1469-8137.2011.03814.x
[65] Silva, I.R., Smyth, T.J., Israel, D.W., Raper, C.D. and Rufty, T.W. (2001) Magnesium is more efficient than calcium in alleviating aluminum rhizotoxicity in soybean and its ameliorative effect is not explained by the Gouy-Chapman-Stern model. Plant & Cell Physiology, 42, 538-545.
http://dx.doi.org/10.1093/pcp/pce066
[66] Watanabe, T. and Okada, K. (2005) Interactive effects of Al, Ca and other cations on root elongation of rice cultivars under low pH. Annals of Botany, 95, 379-385.
http://dx.doi.org/10.1093/aob/mci032
[67] Yang, J.L., You, J.F., Li, Y.Y., Wu, P. and Zheng, S.J. (2007) Magne-sium enhances aluminum-induced citrate secretion in rice bean roots (Vigna umbellata) by restoring plasma membrane H+-ATPase activity. Plant & Cell Physiology, 48, 66-73.
http://dx.doi.org/10.1093/pcp/pcl038
[68] Pandey, P., Srivastava, R.K. and Dubey, R.S. (2013) Salicylic acid alleviates aluminum toxicity in rice seedlings better than mag-nesium and calcium by reducing aluminum uptake, suppressing oxidative damage and increasing antioxidative defense. Ecotoxicology, 22, 656-670.
http://dx.doi.org/10.1007/s10646-013-1058-9
[69] Kinraide, T.B., Pedler, J.F. and Parker, D.R. (2004) Relative effectiveness of calcium and magnesium in the alleviation of rhizotoxicity in wheat induced by copper, zinc, aluminum, sodium, and low pH. Plant and Soil, 259, 201-208.
http://dx.doi.org/10.1023/B:PLSO.0000020972.18777.99
[70] Broadley, M.R., Hammond, J.P., King, G.J., Astley, D., Bowen, H.C., Meacham, M.C., Mead, A., Pink, D.A., Teakle, G.R., Hayden, R.M., Spracklen, W.P. and White, P.J. (2008) Shoot calcium and magnesium concentrations differ between subtaxa, are highly heritable, and associate with potentially pleiotropic loci in Brassica oleracea. Plant Physiology, 146, 1707-1720.
http://dx.doi.org/10.1104/pp.107.114645
[71] Kobayashi, N.I., Iwata, N., Saito, T., Suzuki, H., Iwata, R., Tanoi, K. and Nakanishi, T.M. (2013) Application of 28mM Mg for characterization of Mg uptake in rice seedling under different pH conditions. Journal of Radioanalytical and Nuclear Chemistry, 296, 531-534.
http://dx.doi.org/10.1007/s10967-012-2010-9
[72] Gransee, A. and Fuhrs, H. (2013) Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant and Soil, 368, 5-21.
http://dx.doi.org/10.1007/s11104-012-1567-y
[73] Huang, J.W. and Grunes, D.L. (1992) Effects of root tempera-ture and nitrogen form on magnesium uptake and translocation by wheat seedlings. Journal of Plant Nutrition, 15, 991-1005.
http://dx.doi.org/10.1080/01904169209364376
[74] Lasa, B., Frechilla, S., Aleu, M., González-Moro, B., Lamsfus, C. and Aparicio-Tejo, P.M. (2000) Effects of low and high levels of magnesium on the response of sun-flower plants grown with ammonium and nitrate. Plant and Soil, 225, 167-174.
http://dx.doi.org/10.1023/A:1026568329860
[75] Cakmak, I. (2013) Magnesium in crop production, food quality and human health. Plant and Soil, 368, 1-4.
http://dx.doi.org/10.1007/s11104-013-1781-2