自然干旱胁迫下IrrE基因对甘蓝型油菜生理生化变化的影响
Effect of IrrE Expression on the Physiology and Antioxidant Enzymes in Brassica napus L. under Natural Drought Stress
DOI: 10.12677/BR.2015.45013, PDF, HTML, XML, 下载: 2,545  浏览: 9,339  国家科技经费支持
作者: 代其林, 杨娟, 钟雪梅, 马明莉, 吕旭才:西南科技大学生命科学与工程学院,四川 绵阳;王金玲, 杜世章*:绵阳师范学院,四川 绵阳;王劲:中国农业科学院生物技术研究所,北京
关键词: 干旱胁迫转IrrE基因甘蓝型油菜叶绿素可溶性蛋白丙二醛抗氧化酶Drought Stress IrrE-Transgenic Brassica napus L. Chlorophyll Soluble Protein MDA Antioxidant Enzymes
摘要: 以转IrrE基因与非转基因甘蓝型油菜为材料,在自然干旱条件下,比较研究了转基因与非转基因油菜植株的干旱耐受性情况。结果表明,在0-35 d的自然干旱情况下,随着盆土中土壤含水量的逐渐降低,转基因与非转基因油菜植株的叶片含水量(RWC)也逐渐下降,35 d后他们的含水量降到最低,恢复供水后,其含量均逐渐上升。而油菜叶片的叶绿素含量、可溶性蛋白含量、丙二醛(MDA)含量、SOD和POD酶活性却逐渐上升,恢复供水后,他们的含量和酶活性均逐渐下降,但在干旱胁迫和复水过程中,转基因油菜叶片的含水量、叶绿素含量、可溶性蛋白含量、SOD和POD酶活性均高于非转基因油菜,而丙二醛(MDA)含量始终低于非转基因的含量。说明来源于耐辐射奇球菌的转录调节因子IrrE,参与了油菜幼苗对干旱胁迫的耐受性应答过程,从而增强了植株的耐旱能力。
Abstract: The tolerant responses to drought stress in IrrE-transgenic Brassica napus L. and non-transgenic Brassica napus L. were studied. The results showed that water content in IrrE-transgenic and non-transgenic leaves of rapeseed gradually decreased with the drop of soil water content in pots during 0 - 35 d and their contents reached the minimum value after 35 d under natural drought conditions and then increased gradually after the restoration of water supply. The content of chlorophyll, soluble protein and malondialdehyde (MDA), and the SOD and POD activity in leaves of Brassica napus L. were increased gradually during 0 - 35 d and their contents reached the maximal value after 35 d under natural drought conditions and then decreased gradually after the restoration of water supply. But the water content, chlorophyll content, soluble protein content and the activity of peroxidase (POD) and superoxide dismutase (SOD) in leaves of transgenic Brassica napus L were higher than those in non-transgenic Brassica napus L., while the content of ma-lonaldehyde (MDA) in transgenic Brassica napus L. was lower than non-transgenic Brassica napus L. during 0 - 35 d under drought stress and the restoration of water supply. Therefore, the results from above indicated that IrrE as the transcription regulation factor, which was derived from the radiation resistant bacteria, was involved in the tolerance response of rape seedling to drought stress, and then enhanced the ability of drought tolerance.
文章引用:代其林, 杨娟, 王金玲, 钟雪梅, 马明莉, 吕旭才, 王劲, 杜世章. 自然干旱胁迫下IrrE基因对甘蓝型油菜生理生化变化的影响[J]. 植物学研究, 2015, 4(5): 107-115. http://dx.doi.org/10.12677/BR.2015.45013

参考文献

[1] Ashraf, M. and Harris, P.J. (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166, 3-16.
http://dx.doi.org/10.1016/j.plantsci.2003.10.024
[2] Akhkha, A., Boutraa, T. and Alhejely, A. (2011) The rates of photosynthesis, chlorophyll content, dark respiration, proline and abscicic acid (ABA) in wheat (Triticum durum) under water deficit conditions. International Journal of Agriculture and Biology, 13, 215-221.
[3] Bot, A.J., Nachtergaele, F.O. and Young, A. (2000) Land resource potential and constraints at regional and country levels. World Soil Resources Reports 90, Land and Water Development Division, FAO, Rome.
[4] 武斌, 李新海, 肖木辑, 等 (2007) 53份玉米自交系的苗期耐旱性分析. 中国农业科学, 4, 665-676.
[5] 王贺正, 马均, 李旭毅, 等 (2004) 水稻种质芽期抗旱性和抗旱性鉴定指标的筛选研究. 西南农业学报, 5, 594-599
[6] 杨剑平, 陈学珍, 王文平, 等 (2003) 大豆实验室PEG-6000模拟干旱体系的建立. 中国农学通报, 3, 65-68.
[7] 景蕊莲, 昌小平 (2003) 用渗透胁迫鉴定小麦种子萌发期抗旱性的方法分析. 植物遗传资源学报, 4, 292-296.
[8] 王瑾, 刘桂茹, 杨学 (2006) PEG胁迫下小麦再生植株根系特性与抗旱性的关系. 麦类作物学报, 3, 117-119.
[9] 贺鸿雁, 孙存华, 杜伟, 等 (2006) PEG6000胁迫对花生幼苗渗透调节物质的影响. 中国油料作物学报, 1, 76-78.
[10] 张明生, 张丽霞, 戚金亮, 等 (2006) 甘薯品种抗旱适应性的主成分分析. 贵州农业科学, 1, 11-14.
[11] 石大伟 (1984) 作物抗旱指标探讨. 干旱地区农业研究, 2, 54-63.
[12] 胡荣海 (1986) 农作物抗旱鉴定方法和指标. 作物品种资源, 4, 36-39.
[13] 黎裕 (1994) 植物的渗透调节与其它生理过程的关系及其在作物改良中的作用. 植物生理学通讯, 5, 377-385.
[14] 王汉中 (2009) 中国油菜生产抗灾减灾技术手册. 中国农业科学技术出版社, 北京.
[15] 朱宗河, 郑文寅, 张学昆 (2011) 甘蓝型油菜耐旱相关性状的主成分分析及综合评价. 中国农业科学, 9, 1775- 1787.
[16] Anderson, A.W. and Nordan, H.C. (1961) Taxonomy of a newly-isolated radiation-resistant micrococcus. Bacteriological Proceedings, 56.
[17] Pan, J., Wang, J., Zhou, Z.F., et al. (2009) IrrE, a global regulator of extreme radiation resistance in Deinococcus radiodurans, enhances salt tolerance in Escherichia coli and Brassica napus. PLoS ONE, 4, e4422.
http://dx.doi.org/10.1371/journal.pone.0004422
[18] 曾兵, 张新全, 兰英, 等 (2009) 干旱胁迫下12份扁穗牛鞭草叶绿素含量和原生质膜相对透性比较研究. In: 中国草学会牧草育种委员会第七届代表大会论文集, 中国草学会, 北京, 109-119.
[19] 李莉, 韦翔华, 王华芳 (2007) 盐胁迫对烟草幼苗生理活性的影响. 种子, 5, 79-83.
[20] 彭运生, 刘恩 (1992) 关于提取叶绿素方法的比较研究. 北京农业大学学报, 3, 247-250.
[21] 李合生 (2000) 植物生理生化实验原理和技术. 高等教育出版社, 北京, 184-261.
[22] 张宪政 (1996) 作物水分亏缺伤害生理研究概况. 沈阳农业大学学报, 1, 85-91.
[23] Foolad, M.R., Subbiah, P., Kramer, C., Hargrave, G. and Lin, G.Y. (2003) Genetic relationships among cold, salt and drought tolerance during seed germination in an interspecific cross of tomato. Euphytica, 130, 199-206.
http://dx.doi.org/10.1023/A:1022871500583
[24] Ingram, J. and Bartels, D. (1996) The molecular basis of dehy-dration tolerance in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 47, 377-403.
http://dx.doi.org/10.1146/annurev.arplant.47.1.377
[25] Boutraa, T. (2010) Improvement of water use efficiency in irrigated agriculture: A review. Journal of Agronomy, 9, 1-8.
http://dx.doi.org/10.3923/ja.2010.1.8
[26] 马廷臣, 余蓉蓉, 陈荣军, 等 (2010) PEG-6000模拟干旱对水稻苗期根系形态和部分生理指标影响的研究. 中国农学通报, 8, 149-156.
[27] 薛立, 薛晔, 任向荣, 等 (2009) PEG模拟干旱条件下尾叶桉和枫香苗木的生理响应. 生态环境学报, 2, 614-620.
[28] Beltrano, J. and Ronco, M.G. (2008) Improved tolerance of wheat plants (Triticum aestivum L.) to drought stress and rewatering by the arbuscular mycorrhizal fungus Glomus claroideum: Effect on growth and cell membrane stability. Brazilian Journal of Plant Physiology, 20, 29-37.
http://dx.doi.org/10.1590/S1677-04202008000100004
[29] Nikolaeva, M.K., Maevskaya, S.N., Shugaev, A.G. and Bukhov, N.G. (2010) Effect of drought on chlorophyll content and antioxidant enzyme activi-ties in leaves of three wheat cultivars varying in productivity. Russian Journal of Plant Physiology, 57, 87-95.
http://dx.doi.org/10.1134/S1021443710010127
[30] Sharkey, T.D. (1990) Water stress effects on photosynthesis. Photosynthetica, 24, 651-656.
[31] Cornic, G. (2000) Drought stress inhibits photosynthesis by decreasing stomatal aperture, not by affecting ATP synthesis. Trends in Plant Science, 5, 187-188.
http://dx.doi.org/10.1016/S1360-1385(00)01625-3
[32] Lawlor, D.W. (2002) Limitations to photosynthesis in water stressed leaves: Stomata vs. metabolism and the role of ATP. Annals of Botany, 89, 871-885.
http://dx.doi.org/10.1093/aob/mcf110
[33] De Souza, C.R., Maroco, J.P., Dos Santos, T.P., Rodrigues, M.L., Lopes, C., Pereira, J.S. and Chaves, M.M. (2005) Control of stomatal aperture and carbon uptake by deficit irrigation in two grapevine cultivars. Agriculture, Ecosystems & Environment, 106, 261-274.
http://dx.doi.org/10.1016/j.agee.2004.10.014
[34] Parry, M.A.J., Andralojc, P.J., Khan, S., Lea, P.J. and Keys, A.J. (2002) Rubisco activity: Effects of drought stress. Annals of Botany, 89, 833-838.
http://dx.doi.org/10.1093/aob/mcf103
[35] Tezara, W., Mitchel, V., Driscul, S.P. and Lawlor, D.W. (2002) Effects of water deficit and its interaction with CO2 supply on the biochemistry and physiology of photosynthesis in sunflower. Journal of Experimental Botany, 53, 1781- 1791.
http://dx.doi.org/10.1093/jxb/erf021
[36] 汤章诚 (1984) 逆境条件下植物脯氨酸积累及其可能的意义. 植物生理学通讯, 1, 15-21.
[37] Tambussi, E.A., Bartoli, C.G. and Beltrano, J. (2000) Oxidative damage to thylakoid proteins in water stressed leaves of wheat (Triticum aestivum). Phy-siologia Plantarum, 108, 398-404.
http://dx.doi.org/10.1034/j.1399-3054.2000.108004398.x