单质铜颗粒掺杂的氧化亚铜复合薄膜制备及物性研究
Fabrication and Physical Properties of Cu2O:Cu Composite Thin Films
DOI: 10.12677/APP.2015.511018, PDF, HTML, XML,  被引量 下载: 2,537  浏览: 7,404  国家自然科学基金支持
作者: 王刘勇*:苏州大学物理与光电能源学部,江苏 苏州
关键词: Cu2O:Cu脉冲激光沉积颗粒掺杂Cu2O:Cu PLD Particles Doped
摘要: 本文采用脉冲激光沉积法成功制备出,Cu2O:Cu复合薄膜,Cu2O薄膜。结果表明在600℃时易获得纯Cu2O薄膜,当温度升高到700℃时,会有铜单质的出现,并通过X射线衍射(XRD),原子力显微镜(AFM),扫描电子显微镜(SEM),探究了薄膜的生长取向和表面形貌,在STO (001)基底上,Cu2O生长取向为(002),Cu为(022)。同时利用透射电子显微镜测试了薄膜的微结构,但由于Cu颗粒或团簇尺寸太小,并不能直接被观察到。薄膜的光吸收测试表明,这种颗粒掺杂的复合薄膜较纯Cu2O薄膜,在部分波段具有更高的吸收系数。
Abstract: Pulsed deposition method (PLD) was successfully used in the manufacture of Cu2O and Cu2O:Cu composite thin films. The results showed that we could obtain the pure Cu2O film at 600˚C, and that the elemental copper particles occurred when the temperature rose to 700˚C. In addition, X-ray diffraction, atomic force microscopy and scanning electron microscope were used in the research of growth orientation and surface topography. The orientation between film and substrate is STO(001)//Cu2O(002)//Cu(002). Also the microstructure of the composite film was tested by transmission electron microscopy, but Cu particles or clusters’ size were too small; so we could hardly observe them directly. The absorption coefficient of the particles doped composite film is higher than the pure Cu2O film during some wavelength.
文章引用:王刘勇. 单质铜颗粒掺杂的氧化亚铜复合薄膜制备及物性研究[J]. 应用物理, 2015, 5(11): 131-136. http://dx.doi.org/10.12677/APP.2015.511018

参考文献

[1] Lee, S., Liang, C.W. and Martin, L.W. (2011) Synthesis, Control, and Characterization of Surface Properties of Cu2O Nanostructures. ACS Nano, 5, 3736-3743.
http://dx.doi.org/10.1021/nn2001933
[2] Wang, Y., Miska, P., Pilloud, D., Horwat, D., Mücklich, F. and Pierson, J.F. (2014) Transmittance Enhancement and Optical Band Gap Widening of Cu2O Thin Films after Air Annealing. Journal of Applied Physics, 115, Article ID: 073505.
http://dx.doi.org/10.1063/1.4865957
[3] Xiang, J.Y., Tu, J.P., Huang, X.H. and Yang, Y.Z. (2008) A Comparison of Anodically Grown CuO Nanotube Film and Cu2O Film as Anodes for Lithium Ion Batteries. Journal of Solid State Electrochemistry, 12, 941-945.
http://dx.doi.org/10.1007/s10008-007-0422-1
[4] Goetzberger, A., Hebling, C. and Schock, H.W. (2003) Photovoltaic Materials, History, Status and Outlook. Materials Science and Engineering: R: Reports, 40, 1-46.
http://dx.doi.org/10.1016/S0927-796X(02)00092-X
[5] Willmott, P.R. and Huber, J.R. (2000) Pulsed Laser Vaporization and Deposition. Reviews of Modern Physics, 72, 315.
http://dx.doi.org/10.1103/RevModPhys.72.315
[6] 张瑞明, 李智华, 钟志成, 李小刚, 关丽. 脉冲激光沉积动力学原理[M]. 北京: 科学出版社, 2011.
[7] Lee, S., Liang, C.W. and Martin, L.W. (2011) Synthesis Control and Characterization of Surface Properties of Cu2O Nanostructures. ACS Nano, 5, 3736-3743.
http://dx.doi.org/10.1021/nn2001933
[8] Chen, A., Long, H., Li, X., Li, Y., Yang, G. and Lu, P. (2009) Controlled Growth and Characteristics of Single-Phase Cu2O and CuO Films by Pulsed Laser Deposition. Vacuum, 83, 927-930.
http://dx.doi.org/10.1016/j.vacuum.2008.10.003
[9] 夏春雷. 钠纳米团簇的光吸收和体等离激元: 理论分析(英文)[J]. 中南民族大学学报(自然科学版), 2011, 30(1): 59-63.
[10] Shao, F., Sun, J., Gao, L., Luo, J., Liu, Y. and Yang, S. (2012) High Efficiency Semiconductor-Liquid Junction Solar Cells Based on Cu/Cu2O. Advanced Functional Materials, 22, 3907-3913.
http://dx.doi.org/10.1002/adfm.201200365
[11] Xia, C., Yin, C. and Kresin, V.V. (2009) Photoabsorption by Volume Plasmons in Metal Nanoclusters. Physical Review Letters, 102, Article ID: 156802.
http://dx.doi.org/10.1103/physrevlett.102.156802