血浆脑钠肽水平对急性脑出血患者转归的预测价值
Prognostic Value of Plasma Brain Natriuretic Peptide Levels in Patients with Acute Intracerebral Hemorrhage
DOI: 10.12677/IJPN.2015.44005, PDF, HTML, XML, 下载: 2,399  浏览: 6,809  国家自然科学基金支持
作者: 韦道明, 朱雪红:中国人民解放军八五医院神经内分泌科单位,上海;高丽丽, 杨瑞玲, 林菊珊, 李世举, 吴成翰*:福建中医院大学附属第二人民医院神经内科,福建 福州
关键词: 脑出血脑钠肽预后Cerebral Hemorrhage Brain Natriuretic Peptide Prognosis
摘要: 目的:探讨血浆脑钠肽(BNP)水平与脑出血患者预后的关系。方法:回顾性分析2010年12月~2013年12月治疗的109例脑出血患者,根据转归分为转归良好组和转归不良组。采用酶联免疫吸附法(ELISA)测定血浆BNP。结果:患者卒中病史、吸烟史、血肿体积、格拉斯哥昏迷评分、美国国立卫生研究量卒中量表评分、血肿是否破入脑室及血浆脑钠肽水平均与转归结果有密切关系(X2 = 3.678, 7.096, t = 2.962, 2.361, 3.806, X2 = 4.687, t = 4.962, P < 0.05); Logistic回归分析发现血浆脑钠肽水平与急性脑出血患者的预后相关(P = 0.032, OR = 1.789, 95% CI 1.052~3.043)。结论:血浆BNP是脑出血患者转归的危险因素之一,对患者预后的判断有一定的价值。
Abstract: Objective: To study brain natriuretic peptide (BNP) levels and prognosis in patients with cerebral hemorrhage. Methods: Retrospective analysis of 109 cases with cerebral hemorrhage from December 2010 to December 2014 for the treatment was divided into 2 groups, according to the outcome of a good outcome group and poor outcome groups. The enzyme-linked immunosorbent assay (ELISA) was used for determination of plasma BNP. Result: There was a close relationship between patient outcomes and a previous history of stroke, smoking history, hematoma volume, Glasgow Coma Scale score, National Research Health Stroke Scale score, rupture of hematoma into the ventricle, plasma brain natriuretic peptide level. (X2 = 3.678, 7.096, t = 2.962, 2.361, 3.806, X2 = 4.687, t = 4.962, P < 0.05); Logistic regression analysis revealed a correlation between the prognosis of brain natriuretic peptide levels in patients with acute cerebral hemorrhage (P = 0.032, OR = 1.789, 95% CI 1.052 - 3.043). Conclusions: Plasma brain natriuretic peptide level is an independent risk factor for patients with cerebral hemorrhage and may be a useful prognostic factor for these patients.
文章引用:韦道明, 朱雪红, 高丽丽, 杨瑞玲, 林菊珊, 廖远生, 李世举, 吴成翰. 血浆脑钠肽水平对急性脑出血患者转归的预测价值[J]. 国际神经精神科学杂志, 2015, 4(4): 28-33. http://dx.doi.org/10.12677/IJPN.2015.44005

参考文献

[1] Wagner, K.R. and Dwyer, B.E. (2004) Hematoma Removal, Heme, and Heme Oxygenase Following Hemorrhagic Stroke. Annals of the New York Academy of Sciences, 1012, 237-251.
http://dx.doi.org/10.1196/annals.1306.020
[2] Xi, G.H., Wagner, K.R., Keep, R.F., et al. (1998) Role of blood Clot Formation on Early Edema Development after Experimental Intracerebral Hemorrhage. Stroke, 29, 2580-2586.
http://dx.doi.org/10.1161/01.STR.29.12.2580
[3] Wu, C.H., Huang, F.Y., Wang, K.Y., et al. (2008) Expression of Matrix Metalloproteinase MMP-9 in the Plasma and Hematoma Fluid of Intracerebral Hemorrhage Patients. National Medical Journal of China, 88, 174-176.
[4] Wu, C.H., Yang, R.L., Huang, S.Y., et al. (2011) Analysis of Thrombin-Antithrombin Complex Contents in Plasma and Hematoma Fluid of Hypertensive Intracerebral Hemorrhage Patients after Clot Removal. European Journal of Neurology, 18, 1060-1066.
http://dx.doi.org/10.1111/j.1468-1331.2010.03336.x
[5] Xi, G., Hua, Y., Bhasin, R.R., Ennis, S.R., Keep, R.F. and Hoff, J.T. (2011) Mechanisms of Edema Formation after Intracerebral Hemorrhage: Effects of Extravasated Red Blood Cells on Blood Flow and Blood-Brain Barrier Integrity. Stroke, 32, 2932-2938.
http://dx.doi.org/10.1161/hs1201.099820
[6] Lara, F.A., Kahn, S.A., da Fonseca, A.C., et al. (2009) On the Fate of Extracellular Hemoglobin and Heme in Brain. Journal of Cerebral Blood Flow & Metabolism, 29, 1109-1120.
http://dx.doi.org/10.1038/jcbfm.2009.34
[7] Song, S., Hua, Y., Keep, R.F., et al. (2007) A New Hippocampal Model for Examining Intracerebral Hemorrhage-Re- lated Neuronal Death: Effects of Deferoxamine on Hemoglobin-Induced Neuronal Death. Stroke, 38, 2861-2863.
http://dx.doi.org/10.1161/STROKEAHA.107.488015
[8] Regan, R.F., Chen, M., Li, Z., et al. (2008) Neurons Lacking Iron Regulatory Protein-2 Are Highly Resistant to the Toxicity of Hemoglobin. Neurobiology of Disease, 31, 242-249.
http://dx.doi.org/10.1016/j.nbd.2008.04.008
[9] Mehdiratta, M., Kumar, S., Hackney, D., et al. (2008) Association between Serum Ferritin Level and Perihematoma Edema Volume in Patients with Spontaneous Intracerebral Hemorrhage. Stroke, 39, 1165-1170.
http://dx.doi.org/10.1161/STROKEAHA.107.501213
[10] Selim, M. (2009) Deferoxamine Mesylate: A New Hope for Intracerebral Hemorrhage: From Bench to Clinical Trials. Stroke, 40, 90-91.
http://dx.doi.org/10.1161/STROKEAHA.108.533125
[11] Qing, W.G., Dong, Y.Q., Ping, T.Q., et al. (2009) Brain Edema after Intracerebral Hemorrhage in Rats: The Role of Iron Overload and Aquaporin 4. Journal of Neurosurgery, 110, 462-468.
http://dx.doi.org/10.3171/2008.4.JNS17512
[12] Wu, C.H., Ding, X.Y., Ye, X.B., et al. (2009) Neural Apoptosis of Around Hematoma and Some Apoptosis-Gene in Intracerebral Hemorrhage Patients. Journal of Internal Medicine of Taiwan, 20, 440-446
[13] Felberg, R.A., Grotta, J.C., Shirzadi, A.L., et al. (2002) Cell Death in Experimental Intracerebral Hemorrhage: The “Black Hole” Model of Hemorrhagic Damage. Annals of Neurology, 51, 517-524.
http://dx.doi.org/10.1002/ana.10160
[14] Qureshi, A.I., Suri, M.F., Ostrow, P.T., et al. (2003) Apoptosis as a Form of Cell Death in Intracerebral Hemorrhage. Neurosurgery, 52, 1041-1047; Discussion 1047-1048.
http://dx.doi.org/10.1227/01.neu.0000057694.96978.bc
[15] Xue, M. and Del Bigio, M.R. (2000) Intracortical Hemorrhage Injury in Rats: Relationship between Blood Fractions and Brain Cell Death. Stroke, 31, 1721-1727.
http://dx.doi.org/10.1161/01.STR.31.7.1721
[16] Matsushita, K., Meng, W., Wang, X., et al. (2000) Evidence for Apoptosis after Intercerebral Hemorrhage in Rat Striatum. Journal of Cerebral Blood Flow & Metabolism, 20, 396-404.
http://dx.doi.org/10.1097/00004647-200002000-00022
[17] Diedler, J., Sykora, M., Hahn, P., et al. (2009) C-Reactive-Protein Levels Associated with Infection Predict Short- and Long-Term Outcome after Supratentorial Intracerebral Hemorrhage. Cerebrovascular Diseases, 27, 272-279.
http://dx.doi.org/10.1159/000199465
[18] Löppönen, P., Qian, C., Tetri, S., et al. (2014) Predictive Value of C-Reactive Protein for the Outcome after Primary Intracerebral Hemorrhage. Journal of Neurosurgery, 29, 1-6.
http://dx.doi.org/10.3171/2014.7.jns132678
[19] Chusho, H., Tamura, N., Ogawa, Y., et al. (2001) Dwarfism and Early Death in Mice Lacking C-Type Natriuretic Peptide. Proceedings of the National Academy of Sciences of the United States of America, 98, 4016-4021.
http://dx.doi.org/10.1073/pnas.071389098
[20] Lang, C.C., Choy, A.M. and Struthers, A.D. (1992) Atrial and Brain Natriuretic Peptides: A Dual Natriuretic Peptide System Potentially Involved in Circulatory Homeostasis. Clinical Science (London), 83, 519-527.
http://dx.doi.org/10.1042/cs0830519
[21] Stewart, D., Waxman, K., Brown, C.A., et al. (2007) B2 Type Natriuretic Peptide Levels May Be Elevated in the Critically Injured Trauma Patient without Congestive Heart Failure. Journal of Trauma, 63, 747-750.
http://dx.doi.org/10.1097/01.ta.0000240458.46050.38
[22] Tokudome, T., Kishimoto, I., Yamahara, K., et al. (2009) Impaired Recovery of Blood Flow after Hind-Limb Ischemia in Mice Lacking Guanylyl Cyclase-A, a Receptor for Atrial and Brain Natriuretic Peptide. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 1516-1521.
http://dx.doi.org/10.1161/ATVBAHA.109.187526
[23] Berendes, E., Van-Aken, H., Raufhake, C., et al. (2010) In Diferential Secretion of Atrial and Brain Natriuretic Pepfide in Crifitally Ill Patients. Anesthesia & Analgesia, 93, 676-682.
http://dx.doi.org/10.1097/00000539-200109000-00029
[24] Fukui, K., Lnamura, T., Nakamizo, A., et al. (2000) Relationship between Cardiac Natriuretic Peptide (ANP/BNP) and Fluid Intake in Patients with Subarachnoid Hemorrhage. No To Shinkei Brain and Nerve, 52, 1019-1023.
[25] Espiner, E.A., Leikis, R., Fetch, R.D., et al. (2009) The Neu-ro-Cardioendocrine Response to Acute Subaraehnoid Haemorhage. Clinical Endocrinology (Oxford), 56, 629-635.
http://dx.doi.org/10.1046/j.1365-2265.2002.01285.x
[26] McGirt, M.J., Blessing, R., Nimjee, S.M., et al. (2004) Correlation of Serum Brain Natriuretic Peptide with Hyponatremia and Delayed Ischemic Neurological Deficits after Subarachuoid Hemorrhage. Neurosurgery, 54, 1369-1373; Discussion 1373-1374.
http://dx.doi.org/10.1227/01.NEU.0000125016.37332.50
[27] Isotani, E., Suzuki, R., Tomita, K., et al. (1994) Alterations in Plasma Concentrations of Natriuretic Peptides and Antidiuretic Hormone after Subarachnoid Hemorrhage. Stroke, 25, 2198-2203.
http://dx.doi.org/10.1161/01.STR.25.11.2198
[28] Cameron, V.A. and Richards, A.M. (2002) Natriuretic Peptide System in Fetal Heart and Circulation. Journal of Hypertension, 20, 801-803.
http://dx.doi.org/10.1097/00004872-200205000-00003
[29] James, M.L., Blessing, R., Phillips Bute, B.G., et al. (2009) S100B and Brain Natriuretic Peptide Predict Functional Neurological Outcome after Intracerebral Haemorrhage. Biomarkers, 14, 388-394.
http://dx.doi.org/10.1080/13547500903015784
[30] Modrego, P.J., Boned, B., Berlznga, J.J., et al. (2008) Plasmatic B-Type Natriuretic Peptide and C-Reactive Protein in Hyperacute Stroke As Markers of CT-Evidence of Brain Edema. International Journal of Medical Sciences, 5, 18-23.
http://dx.doi.org/10.7150/ijms.5.18