采用内插金属丝网管强化竖直蒸发管传热研究
Investigation of Flow Boiling Heat Transfer Enhancement by Using a Mesh Cylinder Insert Inside a Vertical Tube
DOI: 10.12677/SE.2015.56008, PDF, HTML, XML, 下载: 2,305  浏览: 5,810  科研立项经费支持
作者: 武超群:华北电力大学能源动力与机械工程学院,北京;张 伟, 刘广林:华北电力大学能源动力与机械工程学院,北京;低品位能源多相流与传热北京市重点实验室,北京
关键词: 流动沸腾内插金属丝网管流型强化传热Flow Boiling Interpolation Wire Mesh Tube Flow Pattern Strengthening Heat Transfer
摘要: 基于蒸发管内流型与传热的内在关联,本文采用200目、孔隙尺寸为75微米的不锈钢金属丝网管作为内插物,通过金属丝网管对流型的调控来影响管内流动沸腾的换热特性;对比研究了普通光管及具有不锈钢金属丝网管作为内插物的蒸发管的传热特性,揭示了泡状流、弹状流、混块状流及环状流这四类典型流型条件下金属丝网管对管内流动沸腾传热的影响机理,为内插金属网管强化沸腾换热技术的应用奠定了科学依据。
Abstract: Based on the relationship between the flow pattern and heat transfer in an evaporative tube, a stainless steel mesh cylinder of 200 ppi with a pore diameter of 75 μm was used as the insert to regulate the flow patter and enhance the heat transfer of flow boiling in the tube. A comparative study on the evaporative heat transfer was conducted for the bare tube and the tube with the mesh cylinder insert, respectively. In the flow regimes of bubbly flow, slug flow, churn flow and churn/annular flow, the influential mechanisms of the mesh tube on the flow boiling heat transfer were disclosed. The results of this paper will provide a scientific basis for the application of flow boiling heat transfer enhancement by the mesh cylinder insert.
文章引用:武超群, 张伟, 刘广林. 采用内插金属丝网管强化竖直蒸发管传热研究[J]. 可持续能源, 2015, 5(6): 61-68. http://dx.doi.org/10.12677/SE.2015.56008

参考文献

[1] Bergles, A.E. (2001) Advanced Enhancement-Third Generation Heat Transfer Technology or the Final Frontier. Transaction of the Institute of Chemistry Engineering, Part A, 79, 437-444.
[2] Wang, P., Lewin, P.L., Swaffield, D.J. and Chen, G. (2009) Electric Field Effects on Boiling Heat Transfer of Liquid Nitrogen. Cryogenics, 49, 379-389.
http://dx.doi.org/10.1016/j.cryogenics.2009.04.006
[3] 隋海明, 黄渭堂. 管内插入双螺旋丝强化冷凝换热的实验研究[J]. 应用科学, 2007, 34(8): 55-57.
[4] Bharadwaj, P., Khondge, A.D. and Date, A.W. (2009) Heat Transfer and Pressure Drop in a Spirally Grooved Tube with Twisted Tape Insert. International Journal of Heat and Mass Transfer, 52, 1938-1944.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.08.038
[5] Peng, H., Ding, G.L. and Hu, H.T. (2011) Effect of Surfactant Additives on Nucleate Pool Boiling Heat Transfer of Refrigerant-Based Nanofluid. Experimental Thermal and Fluid Science, 35, 960-970.
http://dx.doi.org/10.1016/j.expthermflusci.2011.01.016
[6] Basu, N., Warrier, G.R. and Dhir, V.K. (2002) Onset of Nucleate Boiling and Active Nucleation Site Density during Subcooled Flow Boiling. Journal of Heat Transfer, 124, 717-728.
http://dx.doi.org/10.1115/1.1471522
[7] Nagai, N. and Carey, V.P. (2002) Assessment of Surface Wettability and Its Relation to Boiling Phenomena. Thermal Science & Engineering, 10, 1-9.
[8] Kedzierski, M.A. (2007) Effect of Refrigerant Oil Additive on R134a and R123 Boiling Heat Transfer Performance. International Journal of Refrigeration, 30, 144-154.
http://dx.doi.org/10.1016/j.ijrefrig.2006.07.005
[9] 陈宏霞, 徐进良, 李子衿, 谢剑, 邢峰. 相分离概念调控水平管分层流流型[J]. 化工学报, 2012(7): 2045-2050.