冷却条件下超临界CO2在突扩管中流动及其换热的数值模拟
Numerical Simulation on the Flow and Heat Transfer of Supercritical CO2 in Sudden Expansion Pipe under Cooling Condition
DOI: 10.12677/APP.2015.512030, PDF, HTML, XML, 下载: 2,126  浏览: 4,366  国家自然科学基金支持
作者: 王 超*, 白 皓:北京科技大学冶金与生态工程学院,北京;张信荣*:北京大学工学院,北京
关键词: 超临界CO2突扩管流动换热流动分叉Supercritical CO2 Sudden Expansion Pipe Flow and Heat Transfer Flow Bifurcation
摘要: 超临界流体在突扩管中的流动换热规律对于新型能源转换系统、废弃物资源化回收利用等工艺与装置的高效设计具有重要意义。本文通过有限体积法数值计算方法,研究了超临界CO2在突扩冷却条件下的流动与传热规律。研究发现,在冷却条件下超临界CO2在突扩管中流动规律与其在加热条件下的流动规律基本上是一致的。但与加热条件下流动换热规律比较,冷却条件下超临界CO2流动更易失稳。且随着冷却热流密度增大,回流区长度变小。这既是与前人研究的对比又是补充,对超临界CO2作为工作流体材料在突扩管中流动换热规律的工程应用有一定的指导意义。
Abstract: The flow and heat transfer law of supercritical CO2 in sudden expansion duct has important meaning on efficient design of technology and devices of new energy conversion system and recycling of waste resources. In this paper, the numerical method is finite volume method. The flow and heat transfer law of supercritical CO2 in sudden expansion duct under cooling condition is studied in this paper by using numerical method of finite volume method. It is founded that the flow situation of supercritical CO2 in sudden expansion pipe under cool condition is the same as that of under heat condition in this study. Compared with the condition of heating, the bifurcation phenomenon is easier to appear under cooling. And with the increase of wall cooling heat flux, the length of recirculation regions becomes smaller. It is a comparison and supplement to the previous studies, and sheds some light on the application of the law of flow and heat transfer of supercritical CO2 as working fluid material in sudden expansion duct.
文章引用:王超, 张信荣, 白皓. 冷却条件下超临界CO2在突扩管中流动及其换热的数值模拟[J]. 应用物理, 2015, 5(12): 216-222. http://dx.doi.org/10.12677/APP.2015.512030

参考文献

[1] 董其武, 赵松伟, 刘敏. 超临界二氧化碳管内流动及其换热特性分析研究[J]. 制冷与空调, 2008, 22(1): 1-5.
[2] Durst, F., Melling, A. and Whitelaw, J.H. (1974) Low Reynolds Number Flow over a Plane Symmetric Sudden Expansion. Journal of Fluid Mechanics, 64, 111-128.
http://dx.doi.org/10.1017/S0022112074002035
[3] Cherdron, W., Durst, F. and Whitelaw, J.H. (1978) Asymmetric Flows and Instabilities in Symmetric Ducts with Sudden Expansions. Journal of Fluid Mechanics, 84, 13-31.
http://dx.doi.org/10.1017/S0022112078000026
[4] Durst, F., Pereira, J.C.F. and Tropea C. (1993) The Plane Symmetric Sudden-Expansion Flow at Low Reynolds Numbers. Journal of Fluid Mechanics, 248, 567-581.
http://dx.doi.org/10.1017/S0022112093000916
[5] Fearn, R.M., Mullin, T. and Cliffe, K.A. (1990) Nonlinear Flow Phenomena in a Symmetric Sudden Expansion. Journal of Fluid Mechanics, 211, 595-608.
http://dx.doi.org/10.1017/S0022112090001707
[6] Shapira, M., Degani, D. and Weihs, D. (1990) Stability and Existence of Multiple Solutions for Viscous Flow in Suddenly Enlarged Channel. Computers & Fluids, 18, 239-258.
http://dx.doi.org/10.1016/0045-7930(90)90009-M
[7] Battaglia, F., Travener, S.J., Kulkarni, A.K. and Merkle, C.L. (1997) Bifurcation of Low Reynolds Number Flows in Symmetric Channels. AIAA Journal, 35, 99-105.
http://dx.doi.org/10.2514/2.68
[8] Hawa, T. and Rusak, Z. (2000) Viscous Flow in a Slightly Asymmetric Channel with a Sudden Expansion. Physics of Fluids, 12, 2257-2267.
http://dx.doi.org/10.1063/1.1287610
[9] Nie, J.H. and Armaly, B.F. (2004) Three-Dimensional Forced Convection in Plane Symmetric Sudden Expansion. ASME Journal of Heat Transfer, 126, 836-839.
http://dx.doi.org/10.1115/1.1795242
[10] Thiruvengadam, M., Nie, J.H. and Armaly, B.F. (2005) Bifurcated Three-Dimensional Forced Convection in Plane Symmetric Sudden Expansion. International Journal of Heat and Mass Transfer, 48, 3128-3139.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.02.019
[11] Guo, Z.Y., Li, D.Y. and Liang, X.G. (1996) Thermal Effect on the Recirculation Zone in Sudden-Expansion Gas Flows. International Journal of Heat and Mass Transfer, 39, 2619-2624.
http://dx.doi.org/10.1016/0017-9310(95)00371-1
[12] Zhang, X.R., Deng, B.-L. and Yamaguchi, H. (2010) Bifurcation Phenomenon for Forced Convection of Supercritical CO2 Sudden Expansion Flow and Heat Transfer in Symmetric Regime. International Journal of Heat and Mass Transfer, 53, 4467-4473.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.06.047
[13] 赵海燕, 贾雪松, 等. 突扩管分离流场的数值模拟[J]. 科学技术与工程, 2009, 9(17): 5238-5239.
[14] 周再东, 魏长柱, 孙明艳, 刘帅. 突扩管流动形态的数值模拟[J]. 科学技术与工程, 2012, 12(30): 7983-7985.
[15] 邓毕力. 超临界二氧化碳密闭回路自然对流循环研究[D]: [博士学位论文]. 北京: 北京大学, 2012.
[16] Lemmon, E.W., Huber, M.L. and McLinden, M.O. (2007) NIST Reference Fluid Thermodynamic and Transport Properties—REFPROP. NIST Standard Reference Database 23, Version 8.0.