流域水文水资源与社会耦合系统研究进展与评价
Review and Assessment of Interaction between Watershed Hydrology and Society System
DOI: 10.12677/JWRR.2016.51001, PDF, HTML, XML,  被引量 下载: 2,847  浏览: 17,070  国家自然科学基金支持
作者: 郭生练, 许崇育, 陈 华, 刘德地:武汉大学水资源与水电工程科学国家重点实验室,湖北 武汉
关键词: 变化环境降雨径流水文响应水资源配置水文与社会耦合系统Changing Environment Rainfall-Runoff Hydrological Response Water Resources Allocation Interaction between Hydrology and Society
摘要: 国际水文科学协会Panta Rhei (2013~2022)科学计划主题是变化中的水文与社会。本文综述国内外变化环境下的非稳定降雨径流关系识别、水文参数的时空变异特性、基于时变产汇流机理的分布式水文模型、变化环境下的水文响应过程、基于水联网技术的水资源优化配置和水文与社会耦合系统的概念模型等方面的研究进展,指出存在的问题和不足,建议开展流域水文水资源与社会耦合系统研究的内容和科学目标,提高我国水文学及水资源学科的水平和国际影响力,为国际水文科学计划顺利实施做出应有的贡献。
Abstract: The “Panta Rhei” scientific plan (2013-2022) proposed by IAHS is “Change in Hydrology and Society”. The non-stationary rainfall-runoff relationship and its identification methods under changing environment, spatial and temporal variation rule of hydrology parameters, distributed hydrological model based on time-dependent runoff yield and confluence, hydrological process response in a changing environment, optimal water resources allocation model based on the internet of water, and conceptual model of hy-drology and society coupling systems are reviewed, and the existing problems and limitations are pointed out. The main research contents and scientific goals of interaction between hydrology and society are proposed. It will be a great contribution to the IAHS scientific plan and lift up the academic level and international influence of Chinese hydrologiests by the successful implementation of this study.
文章引用:郭生练, 许崇育, 陈华, 刘德地. 流域水文水资源与社会耦合系统研究进展与评价[J]. 水资源研究, 2016, 5(1): 1-15. http://dx.doi.org/10.12677/JWRR.2016.51001

参考文献

[1] 郭生练, 熊立华, 刘攀. 变化环境下水问题与对策[M]. 武汉: 汉斯出版社, 2012. GUO Shenglian, XIONG Lihua and LIU Pan. Water preblems and countermeasures in changing environment. Wuhan: Hans Publishers, 2012. (in Chinese)
[2] MONTANARI, A., YOUNG, G., SAVENIJE, H. H. G., et al. “Panta Rhei—Everything Flows”: Change in hydrology and society—The IAHS Scientific Decade 2013-2022. Hydrological Sciences Journal, 2013, 58(6): 1256-1275.
http://dx.doi.org/10.1080/02626667.2013.809088
[3] 国务院. 关于实行最严格水资源管理制度的意见(国发[2012]3号) [Z]. 2012. Chinese State Council. Advice on applying the strictest water resources management system (2012, No. 3). 2012. (in Chi-nese)
[4] 胡四一. 水资源管理要严守“三条红线”[J]. 决策与信息, 2012(10): 40-42. HU Siyi. Water resources management should strictly abide by the “three red lines”. Decision and Information, 2012(10): 40-42. (in Chinese)
[5] 张建云, 王金星, 李岩, 章四龙. 近50年我国主要江河径流变化[J]. 中国水利, 2008(2): 31-34. ZHANG Jianyun, WANG Jinxing, LI Yan and ZHANG Silong. Study on runoff trends of the main rivers in China in the recent 50 years. China Water Resources, 2008(2): 31-34. (in Chinese)
[6] 李道峰, 田英, 刘昌明. GIS支持下的黄河河源区降水径流要素变化分析[J]. 水土保持研究, 2004, 11(1): 144-147. LI Daofeng, TIAN Ying and LIU Changming. Analysis of rainfall-runoff factor change of the source regions of the Yellow River with supporting of GIS. Research of Soil and Water Conservation, 2004, 11(1): 144-147. (in Chinese)
[7] 孙宁, 李秀彬, 冉圣洪, 李子君. 潮河上游降水-径流关系演变及人类活动的影响分析[J]. 地理科学进展, 2007, 26(5): 41- 47. SUN Ning, LI Xiubin, RAN Shenghong and LI Zijun. The changes of rainfall-runoff relationship and the impacts of human ac-tivities in the upper of Chao Watershed. Progress in Geography, 2007, 26(5): 41-47. (in Chinese)
[8] 任立良, 张炜, 李春红, 王美荣. 中国北方地区人类活动对地表水资源的影响研究[J]. 河海大学学报(自然科学版), 2001, 29(4): 13-18. REN Liliang, ZHANG Wei, LI Chunhong and WANG Meirong. Impacts of human activities on river runoff in north China. Journal of Hohai University (Natural Sciences), 2001, 29(4): 13-18. (in Chinese)
[9] 冯平, 李建柱, 徐仙. 潘家口水库入库水资源变化趋势及影响因素[J]. 地理研究, 2008, 27(1): 213-220. FENG Ping, LI Jianzhu and XU Xian. Analysis of water resources trend and its causes of Panjiakou Reservoir. Geographical Research, 2008, 27(1): 213-220. (in Chinese)
[10] 李慧赟, 张弛, 王本德, 曹明亮, 基于模糊聚类的丰满上游流域降雨径流变化趋势分析, 水文, 2009, 29(3): 28-31. LI Huiyun, ZHANG Chi, WANG Bende and CAO Mingliang. Analysis of changing trend of rainfall and runoff in upstream of Fengman watershed based on fuzzy clustering. Journal of China Hydrology, 2009, 29(3): 28-31. (in Chinese)
[11] 李致家, 于莎莎, 李巧玲, 姚成, 余钟波, 颜梅春, 芮孝芳. 降雨–径流关系的区域规律[J]. 河海大学学报(自然科学版), 2012, 40(6): 597-604. LI Zhijia, YU Shasha, LI Qiaoling, YAO Cheng, YU Zhongbo, YAN Meichun and RUI Xiaofang. Regional pattern of rain-fall-runoff relationship. Journal of Hohai University (Natural Sciences), 2012, 40(6): 597-604. (in Chinese)
[12] 李二辉, 穆兴民, 赵广举. 1919-2010年黄河上中游区径流量变化分析[J]. 水科学进展, 2014, 25(2): 155-163. LI Erhui, MU Xingmin and ZHAO Guangju. Temporal changes in annual runoff and influential factors in the upper and middle reaches of Yellow River from 1919-2010. Advances in Water Science, 2014, 25(2): 155-163. (in Chinese)
[13] 陈利群, 刘昌明. 黄河源区气候和土地覆被变化对径流的影响[J]. 中国环境科学, 2007, 27(4): 559-565. CHEN Liqun, LIU Changming. Influence of climate and land-cover change on runoff of the source regions of Yellow River. China Environmental Science, 2007, 27(4): 559-565. (in Chinese)
[14] 王忠静, 杨芬, 赵建世, 何杉. 基于分布式水文模型的水资源评价新方法[J]. 水利学报, 2008, 39(12): 1279-1285. WANG Zhongjing, YANG Fen, ZHAO Jianshi and HE Shan. New approach for water resources assessment based on distri-buted hydrological model. Journal of Hydraulic Engineering, 2008, 39(12): 1279-1285. (in Chinese)
[15] 权全, 罗纨, 沈冰, 贾中华, 唐双成. 城市化土地利用对降雨径流的影响与调控[J]. 水土保持学报, 2013, 27(1): 46-50. QUAN Quan, LUO Wan, SHEN Bing, JIA Zhonghua and TANG Shuangcheng. Rainfall-runoff reduction measures by land use patterns of Xi’an. Journal of Soil and Water Conservation, 2013, 27(1): 46-50. (in Chinese)
[16] 史晓亮, 杨志勇, 严登华, 李颖, 袁喆. 滦河流域土地利用/覆被变化的水文响应[J]. 水科学进展, 2014, 25(1): 21-27. SHI Xiaoliang, YANG Zhiyong, YAN Denghua, LI Ying and YUAN Zhe. On hydrological response to land-use/cover change in Luanhe River basin. Advances in Water Science, 2014, 25(1): 21-27. (in Chinese)
[17] 贺瑞敏, 张建云, 鲍振鑫, 严小林, 王国庆, 刘翠善. 海河流域河川径流对气候变化的响应机理[J]. 水科学进展, 2015, 26(1): 1-9. HE Ruimin, ZHANG Jianyun, BAO Zhenxin, YAN Xiaolin, WANG Guoqing and LIU Cuishan. Response of runoff to climate change in the Haihe River basin. Advances in Water Science, 2015, 26(1): 1-9. (in Chinese)
[18] 许崇育, 陈华, 郭生练. 变化环境下水文模拟的几个关键问题和挑战[J]. 水资源研究, 2013, 2(2): 85-95. XU Chongyu, CHEN Hua and GUO Shenglian. Hydrological modeling in a changing environment: Issues and challenges. Journal of Water Resources Research, 2013, 2(2): 85-95. (in Chinese)
[19] WANG, Y. Q., ZHOU, L. Observed trends in ex-treme precipitation events in China during 1961-2001 and the associated changes in large-scale circulation. Geophysical Research Letters, 2005, 32(9): Article ID: L09707.
[20] ZHANG, Z., WAGENER, T., REED, P. and BHUSHAN, R. Reducing uncertainty in predictions in ungauged basins by combining hydrological indices regionalization and multiobjective optimization. Water Resources Research, 2008, 44(12): Article ID: W00B04.
[21] GAO, P., GEISSEN, V., RITSEMA, C. J., MU, X. M. and WANG, F. Impact of climate change and anthropogenic activities on stream flow and sediment discharge in the Wei River basin, China. Hydrology and Earth System Science, 2013, 17(3): 961- 972.
http://dx.doi.org/10.5194/hess-17-961-2013
[22] ZHANG, Z. X., CHEN, X., XU, C. Y., YUAN, L. F., YONG, B. and YAN, S. F. Evaluating the non-stationary relationship between precipitation and streamflow in nine major basins of China during the past 50 years. Journal of Hydrology, 2011, 409(1-2): 81-93.
http://dx.doi.org/10.1016/j.jhydrol.2011.07.041
[23] BOORMAN, D. B., SEFTON, C. E. Recognizing the uncertainty in the quantification of the effects of climate change on hydrological response. Climatic Change, 1997, 35(4): 415-434.
http://dx.doi.org/10.1023/A:1005372407881
[24] PANAGOULIA, D., DIMOU, G. Linking space-time scale in hydro-logical modelling with respect to global climate change. Part 1. Models, model properties, and experimental design. Journal of Hydrology, 1997, 194(1-4): 15-37.
http://dx.doi.org/10.1016/S0022-1694(96)03220-9
[25] PANAGOULIA, D., DIMOU, G. Linking space-time scale in hy-drological modelling with respect to global climate change. Part 2. Hydrological response for alternative climate. Journal of Hydrology, 1997, 194(1-4): 38-63.
http://dx.doi.org/10.1016/S0022-1694(96)03221-0
[26] EREGNO, F. E., XU, C. Y. and KITTEROD, N. O. Modeling hydrological impacts of climate change in different climatic zones. International Journal of Climate Change Strategies and Management, 2013, 5(3): 344-365.
http://dx.doi.org/10.1108/IJCCSM-04-2012-0024
[27] JIANG, T., CHEN, Y. D., XU, C. Y., CHEN, X. H., CHEN, X. and SINGH, V. P. Comparison of hydrological impacts of climate change simulated by six hydrological models in the Dongjiang Basin, south China. Journal of Hydrology, 2007, 336(3-4): 316-333.
http://dx.doi.org/10.1016/j.jhydrol.2007.01.010
[28] YOUNG, P. C. The estimation of continuous-time rainfall-flow models for flood risk management. Proceedings of the BHS Third International Symposium, Managing Consequences of a Changing Global Environment, Newcastle, 19-23 July 2010.
http://dx.doi.org/10.7558/bhs.2010.ic41
[29] MERZ, R., PARAJKA, J. and BLOÖSCHL, G. Time stability of catchment model parameters: Implications for climate impact analyses. Water Resource Research, 2011, 47(2): Article ID: W02531.
http://dx.doi.org/10.1029/2010WR009505
[30] KLEMES, V. Operational testing of hydrological simulation models. Hy-drology Science Journal, 1986, 31(1): 13-24.
http://dx.doi.org/10.1080/02626668609491024
[31] XU, C. Y. Climate change and hydrologic models: A review of ex-isting gaps and recent research developments. Water Resources Management, 1999, 13(5): 369-382.
http://dx.doi.org/10.1023/A:1008190900459
[32] XU, C. Y. Estimation of parameters of a conceptual water balance model for ungauged catchments. Water Resources Management, 1999, 13(5): 353-368.
http://dx.doi.org/10.1023/A:1008191517801
[33] LI, C. Z., ZHANG, L., WANG, H., ZHANG, Y. Q., YU, F. L. and YAN, D. H. The transferability of hydrological models under nonstationary climatic conditions. Hydrology Earth System and Science, 2012, 16(4): 1239-1254.
http://dx.doi.org/10.5194/hess-16-1239-2012
[34] REFSGAARD, J. C., MADSEN, H., AndréAssian, V., et al. A frame-work for testing the ability of models to project climate change and its impacts. Climatic Change, 2014, 122(1-2): 271-282.
http://dx.doi.org/10.1007/s10584-013-0990-2
[35] HRACHOWITZ, M., SAVENIJE, H. H. G., BLÖSCHL, G., et al. A decade of predictions in ungauged basins (PUB)—A review. Hydrological Sciences Journal, 2013, 58(6): 1198-1255.
http://dx.doi.org/10.1080/02626667.2013.803183
[36] BLÖCHL, G., SIVAPALAN, M. and WAGENER, T. Runoff pre-diction in ungauged basin, synthesis across process, place and scale. Cambridge: Cambridge University Press, 2013.
[37] MERZ, R., BLOSCHL, G. Regionalisation of catchment model parameters. Journal of Hydrology, 2004, 287(1-4): 95-123.
http://dx.doi.org/10.1016/j.jhydrol.2003.09.028
[38] XU, C. Y. Operational testing of a water balance model for predicting climate change impacts. Agricultural and Forest Meteorology, 1999, 98-99(1-4): 295-304.
http://dx.doi.org/10.1016/S0168-1923(99)00106-9
[39] XU, C. Y. Testing the transferability of regression equations de-rived from small sub-catchments to large area in central Sweden. Hydrology and Earth System Sciences, 2003, 7(3): 317-324.
http://dx.doi.org/10.5194/hess-7-317-2003
[40] VANDEWIELE, G. L., ELIAS, A. Monthly water balance of ungauged catchments obtained by geographical regionalization. Journal of Hydrology, 1995, 170(1-4): 277-291.
http://dx.doi.org/10.1016/0022-1694(95)02681-E
[41] PARAJKA, J., BLOSCHL, G. and MERZ, R. Regional calibration of catchment models: Potential for ungauged catchments. Water Resources Research, 2007, 43(6): Article ID: W06406.
http://dx.doi.org/10.1029/2006WR005271
[42] PARAJKA, J., MERZ, R. and BLOSCHL, G. A comparison of regionalisation methods for catchment model parameters. Hydrology and Earth System Sciences, 2005, 9(3): 157-171.
http://dx.doi.org/10.5194/hess-9-157-2005
[43] KIZZA, M., GUERRERO, J. L., RODHE, A., XU, C. Y. and NTALE, H. K. Modelling catchment inflows into Lake Victoria: Regionalisation of the parameters of a conceptual water balance model. Hydrology Research, 2013, 44(5): 789-808.
[44] LI, L., NGONGONDO, C. S., XU, C. Y. and GONG, L. Comparison of the global TRMM and WFD precipitation datasets in driving a large-scale hydrological model in Southern Africa. Hydrology Research, 2013, 44(5): 770.
http://dx.doi.org/10.2166/NH.2012.175
[45] HUNDECHA, Y., OUARDA, T. B. M. J. and BARDOSSY, A. Regional estimation of parameters of a rainfallrunoff model at ungauged watersheds using the “spatial” structures of the parameters within a canonical physiographic-climatic space. Water Resources Research, 2008, 44(1): Article ID: W01427.
http://dx.doi.org/10.1029/2006WR005439
[46] EFSTRATIADIS, A., KOUTSOYIANNIS, D. One decade of multi-objective calibration approaches in hydrological modelling: A review. Hydrological Sciences Journal, 2010, 55(1): 58-78.
http://dx.doi.org/10.1080/02626660903526292
[47] LIN, C. A., WEN, L., BéLand, M. and CHAUMONT, D. A coupled atmospheric-hydrological modeling study of the 1996 Ha! Ha! River basin flash flood in Québec, Canada. Geophysical Research Letters, 2002, 29(2): 13/1-13/4.
[48] SEUFFERT, G., GROSS, P., SIMMER, C. and WOOD, E. F. The influence of hydrologic modeling on the predicted local weather: Two-way coupling of a mesoscale weather prediction model and a land surface hydrologic model. Journal of Hydrometerorology, 2002, 3(5): 505-522.
http://dx.doi.org/10.1175/1525-7541(2002)003<0505:TIOHMO>2.0.CO;2
[49] ANDERSON, M. L., CHEN, Z. Q., KAVVAS, M. L. and FELDMAN, A. Coupling HEC-HMS with atmospheric models for prediction of watershed runoff. Journal of Hydrologic Engineering, 2002, 7(4): 312-318.
http://dx.doi.org/10.1061/(ASCE)1084-0699(2002)7:4(312)
[50] JASPER, K., GURTZ, J. and LANG, H. Advanced flood forecasting in Alpine watersheds by coupling meteorological observations and forecasts with a distributed hydrological model. Journal of Hydrology, 2002, 267(1-2): 40-52.
http://dx.doi.org/10.1016/S0022-1694(02)00138-5
[51] COLLISCHONN, W., HAAS, R., ANDREOLLI, I. and Tucci, C. E. M. Forecasting River Uruguay flow using rainfall forecasts from a regional weather-prediction model. Journal of Hydrology, 2005, 305(1-4): 87-98.
http://dx.doi.org/10.1016/j.jhydrol.2004.08.028
[52] 陆桂华, 吴志勇, 雷Wen, 张建云. 陆气耦合模型在实时暴雨洪水预报中的应用[J]. 水科学进展, 2006, 17(6): 847-852. LU Guihua, WU Zhiyong, LEI Wen and ZHANG Jianyun. Application of a coupled atmospheric-hydrological modeling system to real-time flood forecast. Advances in Water Science, 2006, 17(6): 847-852. (in Chinese)
[53] 郭生练, 张俊, 郭靖, 陈桂亚, 陈华. 基于气象模式的汉江流域洪水预报系统[J]. 水利水电科技进展, 2009, 29(3): 1-5. GUO Shenglian, ZHANG Jun, GUO Jing, CHEN Guiya and CHEN Hua. Flood forecasting system of Hanjiang Basin based on meteorological model. Advances in Science and Technology of Water Resources, 2009, 29(3): 1-5. (in Chinese)
[54] 高冰, 杨大文, 谷湘潜, 许继军. 基于数值天气模式和分布式水文模型的三峡入库洪水预报研究[J]. 水力发电学报, 2012, 31(1): 20-26. GAO Bing, YANG Dawen, GU Xiangqian and XU Jijun. Flood forecast of Three Gorges reservoir based on numerical weather forecast model and distributed hydrologic model. Journal of Hydroelectric Engineering, 2012, 31(1): 20-26. (in Chinese)
[55] 黄强, 王增发, 畅建霞, 梁柱, 田峰巍. 城市供水水源联合优化调度研究[J]. 水利学报, 1999(5): 57-62. HUANG Qiang, WANG Zengfa, CHANG Jianxia, LIANG Zhu and TIAN Fengwei. Study on joint optimal operation of mu-nicipal water supply. Journal of Hydraulic Engineering, 1999(5): 57-62. (in Chinese)
[56] 陈晓宏, 陈永勤, 赖国友. 东江流域水资源优化配置研究[J]. 自然资源学报, 2002, 17(3): 366-372. CHEN Xiaohong, CHEN Yongqin and LAI Guoyou. Optimal allocation of water resources in Dongjiang River Basin. Journal of Natural Resources, 2002, 17(3): 366-372. (in Chinese)
[57] 王浩, 秦大庸, 王建华, 罗琳, 裴源生. 黄淮海流域水资源合理配置[M]. 北京: 科学出版社, 2003. WANG Hao, QIN Dayong, WANG Jianhua, LUO Lin and PEI Yuansheng. Rational allocation of water resources in Huang-Huai-Hai watershed. Beijing: Science Press, 2003. (in Chinese)
[58] 刘建林, 马斌, 解建仓, 赵勇. 跨流域多水源多目标多工程联合调水仿真模型–南水北调中线工程[J]. 水土保持学报, 2003, 17(1): 75-79. LIU Jianlin, MA Bin, XIE Jiancang and ZHAO Yong. Simulation model of multi-reservoir and multi-consumer and mul-ti-workfor water unite regulation of cross-drainage basin. Journal of Soil and Water Conservation, 2003, 17(1): 75-79. (in Chi-nese)
[59] 刘丙军, 陈晓宏, 张灵, 刘德地. 中国南方季节性缺水地区水资源合理配置研究[J]. 水利学报, 2007, 38(6): 732-737. LIU Bingjun, CHEN Xiaohong, ZHANG Ling and LIU Dedi. Optimal deployment of water resources for seasonal water shortage area in South China. Journal of Hydraulic Engineering, 2007, 38(6): 732-737. (in Chinese)
[60] 王德智, 董增川, 童芳. 基于RAGA的供水库群水资源配置模型研究[J]. 水科学进展, 2007, 18(4): 586-590. WANG Dezhi, DONG Zengchuan and TONG Fang. Optimal operation of feeding reservoir group based on RAGA. Advances in Water Science, 2007, 18(4): 586-590. (in Chinese)
[61] 金菊良, 王文圣, 程吉林, 黄诗峰. 区域水资源合理配置的模糊模式识别-模糊层次分析法的熵耦合模型[J]. 四川大学学报(工程科学版), 2007, 39(2): 9-13. JIN Juliang, WANG Wensheng, CHENG Jilin and HUANG Shifeng. Entropy coupled model of fuzzy pattern recognition and FAHP for reasonable allocation of water resources to region. Journal of Sichuan University(Engineering Science Edition), 2007, 39(2): 9-13. (in Chinese)
[62] 辛芳芳, 梁川. 基于模糊多目标线性规划的都江堰灌区水资源合理配置[J]. 中国农村水利水电, 2008(4): 36-38. XIN Fangfang, LIANG Chuan. Rational allocation of Dujiangyan irrigation area water resources based on fuzzy multi-objective linner programming. China Rural Water and Hydropower, 2008(4): 36-38. (in Chinese)
[63] 陈卫宾, 董增川, 张运凤. 基于记忆梯度混合遗传算法的灌区水资源优化配置[J]. 农业工程学报, 2008, 24(6): 10-13. CHEN Weibin, DONG Zengchuan and ZHANG Yunfeng. Optimization the allocation of irrigated areas water resources based on memory gradient hybrid genetic algorithm. Transactions of the CSAE, 2008, 24(6): 10-13. (in Chinese)
[64] 耿福明, 薛联青, 吴义. 基于净效益最大化的区域水资源优化配置[J]. 河海大学学报自然科学版, 2007, 35(2): 149-152. GENG Fuming, XUE Lianqing and WU Yi. Optimal allocation of regional water resources based on maximization of net benefit. Journal of Hohai University (Natural Sciences), 2007, 35(2): 149-152. (in Chinese)
[65] 王福林, 吴丹. 基于水资源优化配置的区域产业结构动态演化模型[J]. 软科学, 2009, 23(5): 92-96. WANG Fulin, WU Dan. Regional industrial structure dynamic evolutionary model based on water resource optimal allocation. Soft Science, 2009, 23(5): 92-96. (in Chinese)
[66] 陈春林, 郑垂勇. ANP方法在南水北调工程水资源优化配置中的应用[J]. 水利经济, 2010, 28(2): 25-27. CHEN Chunlin, ZHENG Chuiyong. Application of analytic network process (ANP) in optimal allocation of water resources for South-to-North water transfer project. Journal of Economics of Water Resources, 2010, 28(2): 25-27. (in Chinese)
[67] 陈强, 秦大庸, 苟思, 周祖昊, 桑学锋. SWAT模型与水资源配置模型的耦合研究[J]. 灌溉排水学报, 2010, 29(1): 19-22. CHEN Qiang, QIN Dayong, GOU Si, ZHOU Zuhao and SANG Xuefeng. Research of the coupling of SWAT model and water allocation model. Journal of Irrigation and Drainage, 2010, 29(1): 19-22. (in Chinese)
[68] 张礼兵, 徐勇俊, 金菊良, 吴成国. 安徽省工业用水量变化影响因素分析[J]. 水利学报, 2014, 45(7): 837-843. ZHANG Libing, XU Yongjun, JIN Juliang and WU Chengguo. Analysis of influence factors of regional industry water use in Anhui province. Journal of Hydraulic Engineering, 2014, 45(7): 837-843. (in Chinese)
[69] 左其亭, 赵衡, 马军霞. 水资源与经济社会和谐平衡研究[J]. 水利学报, 2014, 45(7): 785-792. ZUO Qiting, ZHAO Heng and MA Junxia. Study on harmony equilibrium between water resources and economic society de-velopment. Journal of Hydraulic Engineering, 2014, 45(7): 785-792. (in Chinese)
[70] 张守平, 魏传江, 王浩, 侯丽娜, 毕彦杰, 周翔南. 流域/区域水量水质联合配置研究I: 理论方法[J]. 水利学报, 2014, 45(7): 757-766. ZHANG Shouping, WEI Chuanjiang, WANG Hao, HOU Lina, BI Yanjie and ZHOU Xiangnan. Basin/region water quality and quantity allocation I: Theory and method. Journal of Hydraulic Engineering, 2014, 45(7): 757-766. (in Chinese)
[71] 张守平, 魏传江, 王浩, 侯丽娜, 毕彦杰, 周翔南. 流域/区域水量水质联合配置研究II: 实例应用[J]. 水利学报, 2014, 45(8): 938-949. ZHANG Shouping, WEI Chuanjiang, WANG Hao, HOU Lina, BI Yanjie and ZHOU Xiangnan. Basin/region water quality and quantity allocation II: Application. Journal of Hydraulic Engineering, 2014, 45(8): 938-949. (in Chinese)
[72] 李昱, 彭勇, 初京刚, 周惠成, 张弛. 复杂水库群共同供水任务分配问题研究[J]. 水利学报, 2015, 46(1): 83-90. LI Yu, PENG Yong, CHU Jinggang, ZHOU Huicheng and ZHANG Chi. Common tasks allocation problem of water supply for a complex multi-reservoir system. Journal of Hydraulic Engineering, 2015, 46(1): 83-90. (in Chinese)
[73] 王浩, 游进军. 水资源合理配置研究历程与进展[J]. 水利学报, 2008, 39(10): 1168-1175. WANG Hao, YOU Jinjun. Advancements and development course of research on water resources deployment. Journal of Hy-draulic Engineering, 2008, 39(10): 1168-1175. (in Chinese)
[74] 郭生练, 陈炯宏, 刘攀, 李雨. 水库群联合优化调度研究进展与展望[J]. 水科学进展, 2010, 21(4): 85-92. GUO Shenglian, CHEN Jionghong, LIU Pan and LI Yu. State-of-the-art review of joint operation for multi-reservoir systems. Advances in Water Science, 2010, 21(4): 85-92. (in Chinese)
[75] 陈晓宏, 刘德地, 刘丙军, 王兆礼. 湿润区变化环境下的水资源优化配置——理论方法与东江流域应用实践[M]. 北京: 中国水利水电出版社, 2011. CEHN Xiaohong, LIU Dedi, LIU Bingjun and WANG Zhaoli. Optimal allocation of humid area water resources in changing environment: Theory method and application in Dongjiang river basin. Beijing: China Water and Power Press, 2011. (in Chi-nese)
[76] 王浩, 王建华, 秦大庸. 流域水资源合理配置的研究进展与发展方向[J]. 水科学进展, 2004, 15(1): 123-128. WANG Hao, WANG Jianhua and QIN Dayong. Research advances and direction on the theory and practice of reasonable water resources allocation. Advances in Water Science, 2004, 15(1): 123-128. (in Chinese)
[77] 秦大庸, 陆垂裕, 刘家宏, 王浩, 王建华, 李海红, 褚俊英, 陈根发. 流域“自然–社会”二元水循环理论框架[J]. 科学通报, 2014, 59(4-5): 419-427. QIN Dayong, LU Chuiyu, LIU Jiahong, WANG Hao, WANG Jianhua, LI Haihong, ZHU Junying and CHEN Genfa. Theoreti-cal framework of dualistic nature-social water cycle. Chinese Science Bulletin, 2014, 59(4-5): 419-427. (in Chinese)
[78] 王浩, 王建华, 秦大庸, 贾仰文. 基于二元水循环模式的水资源评价理论方法[J]. 水利学报, 2006, 37(12): 1496-1502. WANG Hao, WANG Jianhua, QIN Dayong and JIA Yangwen. Theory and methodology of water resources assessment based on dualistic water cycle model. Journal of Hydraulic Engineerging, 2006, 37(12): 1496-1502. (in Chinese)
[79] 贾仰文, 王浩, 周祖昊, 等. 海河流域二元水循环模型开发及其应用——I模型开发与验证[J]. 水科学进展, 2010, 21(1): 1-8. JIA Yangwen, WANG Hao, ZHOU Zuhao, et al. Development and application of dualistic water cycle model in Haihe River Basin: I. Model development and validation. Advances in Water Science, 2010, 21(1): 1-8. (in Chinese)
[80] 贾仰文, 王浩, 周祖昊, 等. 海河流域二元水循环模型开发及其应用——II水资源管理战略研究应用[J]. 水科学进展, 2010, 21(1): 9-15. JIA Yangwen, WANG Hao, ZHOU Zuhao, et al. Development and application of dualistic cycle model in Haihe River Basin: II. Strategic research and application for water resource management. Advances in Water Science, 2010, 21(1): 9-15. (in Chi-nese)
[81] 刘家宏, 秦大庸, 王浩, 王明娜, 杨志勇. 海河流域二元水循环模式及其演化规律[J]. 科学通报, 2010, 55(6): 512-521. LIU Jiahong, QIN Dayong, WANG Hao, WANG Mingna and YANG Zhiyong. Dualistic water cycle pattern and its evolution in Haihe river basin. Chinese Science Bulletin, 2010, 55(6): 512-521. (in Chinese)
[82] 王浩, 贾仰文, 杨贵羽, 周祖昊, 仇亚琴, 牛存稳, 彭辉. 海河流域二元水循环及其伴生过程综合模拟[J]. 科学通报, 2013, 58(12): 1064-1077. WANG Hao, JIA Yangwen, YANG Guiyu, ZHOU Zuhao, QIU Yaqin, NIU Cunwen and PENG Hui. Integrated simulation of the dualistic and its processes in the Haihe River Basin. Chinese Science Bulletin, 2013, 58(12): 1064-1077. (in Chinese)
[83] 刘佳嘉, 周祖昊, 贾仰文, 王浩. 水循环演变中多因素综合影响贡献量分解方法[J]. 水利学报, 2014, 45(6): 658-665. LIU Jiajia, ZHOU Zuhao, JIA Yangwen and WANG Hao. A new method to quantitatively separate the effects of multi-factors on the water cycle evolution. Journal of Hydraulic Engineering, 2014, 45(6): 658-665. (in Chinese)
[84] 龙爱华, 王浩, 于福亮, 王建华. 社会水循环理论基础探析Ⅱ: 科学问题与学科前沿[J]. 水利学报, 2011, 42(5): 505-513. LONG Aihua, WANG Hao, YU Fuliang and WANG Jianhua. Study on theoretical method of social water cycle II: Scientific topics and discipline frontier. Journal of Hydraulic Engineering, 2011, 42(5): 505-513. (in Chinese)
[85] MILLY, P. C. D., BETANCOURT, J., FALKENMARK, M., HIRSCH, R. M., KUNDZEWICZ, Z. W., LETTENMAIER, D. P. and STOUFFER, R. J. Stationarity is dead: Whither water management? Science, 2008, 319(5863): 573-574.
http://dx.doi.org/10.1126/science.1151915
[86] 熊立华, 郭生练. 分布式流域水文模型[M]. 北京: 中国水利水电出版社, 2004. XIONG Lihua, GUO Shenglian. Distributed watershed hydrological model. Beijing: China Water and Power Press, 2004. (in Chinese)
[87] 张文华, 郭生练. 流域降雨径流理论与方法[M]. 武汉: 湖北科学技术出版社, 2007. ZHANG Wenhua, GUO Shenglian. Theory and method of watershed rainfall-runoff relationship. Wuhan: Hubei Science and Technology Press, 2007. (in Chinese)
[88] Littlewood, I. G., Croke, B. F. W. Data time-step dependency of conceptual rainfall-streamflow model parameters: An empirical study with implications for regionalization. Hydrology Science Journal, 2008, 53(4): 685-695.
http://dx.doi.org/10.1623/hysj.53.4.685
[89] 王浩, 严登华, 贾仰文, 胡东来, 王凌河. 现代水文水资源学科体系及研究前沿和热点问题[J]. 水科学进展, 2010, 21(4): 481-489. WANG Hao, YAN Denghua, JIA Yangwen, HU Donglai and WANG Linghe. Subject system of modern hydrology and water resources and research frontiers and hot issues. Advances in Water Science, 2010, 21(4): 481-489. (in Chinese)
[90] 刘德地, 郭生练, 郭海晋, 洪兴骏. 实施最严格水资源管理制度面临的技术问题与挑战. 水资源研究, 2014, 3(3): 179-188. LIU Dedi, GUO Shenglian, GUO Haijin and HONG Xingjun. Technique controversies and challenges of applying the strictest water resources control system. Journal of Water Resources Research, 2014, 3(3): 179-188. (in Chinese)