Al-4.5Mg-0.6Mn铝合金高温变形行为研究
Study of High-Temperature Deformation Behavior of Al-4.5Mg-0.6Mn Aluminum Alloy
DOI: 10.12677/MS.2016.61005, PDF, HTML, XML, 下载: 2,076  浏览: 6,273  科研立项经费支持
作者: 刘 栩, 李严法, 李江宇, 戴青松:广西柳州银海铝业股份有限公司,广西 柳州;邓运来:中南大学材料科学与工程学院,湖南 长沙
关键词: Al-4.5Mg-0.6Mn铝合金热压缩变形高温流变应力本构方程Al-4.5Mg-0.6Mn Aluminum Alloy Hot Compression Deformation High-Temperature Flow Stress Constitutive Equations
摘要: 在Gleeble-3800热模拟试验机上对Al-4.5Mg-0.6Mn铝合金进行热压缩实验,研究该合金在变形温度为300℃~500℃、应变速率为0.0l~10 s−1条件下的热变形行为。分析了Al-4.5Mg-0.6Mn铝合金的高温流变行为。结果表明:变形温度和应变速率对Al-4.5Mg-0.6Mn铝合金流变应力影响显著,流变应力随变形温度的升高而降低,随应变速率的增加而增大。建立了Zener-Hollomon参数的本构方程,可对Al-4.5Mg- 0.6Mn铝合金在不同应变速率和变形温度下的峰值流变应力进行预测,发现本构方程预测值与流变应力实测值吻合较好。
Abstract: The flow stress features of Al-4.5Mg-0.6Mn aluminum alloy were studied by the isothermal com-pression of cylindrical specimen in the temperature range of 300˚C - 500˚C and strain rate range of 0.01 - 10 s−1 with Gleeble-3800 simulated machine. The results show that flow stress is apparently influenced by both deformation temperature and strain rate, as the flow stress decreases with the increased temperature, while increases with the raise of strain rate. The constitutive equations were presented by Zener-Hollomon parameter, and using the Zener-Hollomon parameter consti-tutive equation presented, the prediction of the peak flow stress in Al-4.5Mg-0.6Mn aluminum alloy as function of strain rate, temperature and strain shows to be in good agreement with the measured flow stresses.
文章引用:刘栩, 李严法, 李江宇, 戴青松, 邓运来. Al-4.5Mg-0.6Mn铝合金高温变形行为研究[J]. 材料科学, 2016, 6(1): 39-45. http://dx.doi.org/10.12677/MS.2016.61005

参考文献

[1] 齐国栋, 杨鑫, 师雪飞, 左德运. 退火制度对冷轧和温轧的5083铝合金组织性能的影响[J]. 轻合金, 2010(9): 70- 72.
[2] Lin, S.P., Nie, Z.R., Huang, H. and Li, B.L. (2010) Annealing Behavior of a Modified 5083 Aluminum Alloy. Materials and Design, 31, 1607-1612.
http://dx.doi.org/10.1016/j.matdes.2009.09.004
[3] Lee, Y.B., Dong, H.S., Park, K.-T. and Nam, W.J. (2004) Effect of Annealing Temperature on Microstructures and Mechanical Properties of a 5083 Al Alloy Deformed at Cryogenic Temperature. Srcipta Mteralia, 51, 355-359.
http://dx.doi.org/10.1016/j.scriptamat.2004.02.037
[4] 徐清波, 陶友瑞, 米芳. 5083铝合金高温流变本构关系研究[J]. 矿冶工程, 2013, 33(5): 124-126.
[5] Raghunathan, N. and Sheppard, T. (1989) Microstructural Devel-opment during Annealing of Hot Rolled Al-Mg Alloys. Materials Science and Technology, 5, 542-547.
http://dx.doi.org/10.1179/mst.1989.5.6.542
[6] Jonas, J.J. and Shllars, C.M.T. (1969) Strength and Structure under Hot Working Conditions. International Metallurgical Reviews, 15, 22-32.
[7] 吴文祥, 孙德勤, 曹春艳, 等. 5083铝合金热压缩变形流变应力行为[J]. 中国有色金属学报, 2007, 17(10): 1667- 1671.
[8] Carmon, R., Zhu, Q., Sellars, C.M. and Beynon, J.H. (2005) Controlling Mechanisms of Deformation of AA5052 Aluminum Alloy at Small Strains under Hot Working Conditions. Materials Science and Engineering: A, 393, 157-163.
http://dx.doi.org/10.1016/j.msea.2004.11.010
[9] McQueen, H.J. and Belling, J. (2000) Alloy 5005: Hot Wor-kability in Relation to Other Al-Mg Alloys. Materials Science Forum, 331, 539-544.
http://dx.doi.org/10.4028/www.scientific.net/MSF.331-337.539
[10] Zhang, H., Peng, D.-S., Yang, L.-B. and Meng, L.-P. (2001) Flow Stress Equation for Multipass Hot-Rolling of Aluminum Alloys. Journal of Central South University of Technology, 8, 13-17.
http://dx.doi.org/10.1007/s11771-001-0017-4
[11] Li, Y.Y., Wei, D.D., Hu, J.D., Li, Y.H. and Chen, S.L. (2012) Constitutive Modeling for Hot Deformation Behavior of T24 Ferritic Steel. Computational Materials Science, 53, 425-430.
http://dx.doi.org/10.1016/j.commatsci.2011.08.031
[12] Wu, B., Li, M.Q. and Ma, D.W. (2012) The Flow Behavior and Constitutive Equations in Isothermal Compression of 7050 Aluminum Alloy. Materials Science and Engineering: A, 542, 79-87.
http://dx.doi.org/10.1016/j.msea.2012.02.035