ISW2缺失下基因功能对核小体定位影响的研究
The Impact of Gene Function on Nucleosome Positioning in the Absence of ISW2
DOI: 10.12677/BIPHY.2015.34007, PDF, HTML, XML, 下载: 2,041  浏览: 5,502  国家自然科学基金支持
作者: 胡 焕, 丰继华, 魏恨恨, 周晓雯, 李泽华:云南民族大学电气信息工程学院,云南 昆明
关键词: 核小体定位基因功能(GO)ISW2野生型富营养培养Nucleosome Positioning Gene Ontology ISW2 WT YPD
摘要: 为研究染色质重塑因子对核小体定位的影响以及ISW2缺失情况下基因功能对核小体形成的作用,本文分别对ISW2敲除、野生型(WT)及富营养培养条件下(YPD)三种酵母核小体占位率数据进行聚类、比较、分析后发现,在ISW2缺失情况下核小体的位置远离TSS,同时发现11种基因功能对核小体的定位产生了显著影响。
Abstract: To study the impact of chromatin remodeling factor on nucleosome positioning and the function of gene in the formation of nucleosomes in the absence of ISW2, this paper compares and analyzes the data on the proportion of nucleosomes in three kinds of yeasts, which are cultured without ISW2, WT or in YPD. The study finds that in the absence of ISW2 the nuclesomes are far from TSS and that 11 genes impose noticeable impact on nuclesome positioning.
文章引用:胡焕, 丰继华, 魏恨恨, 周晓雯, 李泽华. ISW2缺失下基因功能对核小体定位影响的研究[J]. 生物物理学, 2015, 3(4): 67-76. http://dx.doi.org/10.12677/BIPHY.2015.34007

参考文献

[1] Riccio, A. (2010) Dynamic Epigenetic Regulation in Neurons: Enzymes, Stimuli and Signaling Pathways. Nature Neuroscience, 13, 1330-1337.
http://dx.doi.org/10.1038/nn.2671
[2] Owen-Hughes, T. (2003) Colworth Memorial Lecture. Pathways for Remodeling Chromatin. Biochemical Society Transactions, 31, 893-905.
http://dx.doi.org/10.1042/bst0310893
[3] Cosma, M.P., Tanaka, T. and Nasmyth, K. (1999) Ordered Recruitment of Transcription and Chromatin Remodeling Factors to a Cell Cycle-and Developmentally Regulated Promoter. Cell, 97, 299-311.
http://dx.doi.org/10.1016/S0092-8674(00)80740-0
[4] Narlikar, G.J., Fan, H.Y. and Kingston, R.E. (2002) Cooperation between Complexes That Regulate Chromatin Structure and Transcription. Cell, 108, 475-487.
http://dx.doi.org/10.1016/S0092-8674(02)00654-2
[5] Segal, E., Fondufe-Mittendorf, Y., Chen, L., Thastrom, A., Field, Y., Moore, I.K., Wang, J.P. and Widom, J. (2006) A Genomic Code for Nucleosome Positioning. Nature, 442, 772-778.
http://dx.doi.org/10.1038/nature04979
[6] Schones, D.E., Gui, K., Cuddapah, S., Roh, T.Y., Barski, A., Wang, Z., Wei, G. and Zhao, K. (2008) Dynamic Regulaton of Nucleosome Positioning in the Human Genome. Cell, 132, 887-898.
http://dx.doi.org/10.1016/j.cell.2008.02.022
[7] Zhang, Z. and Pugh, B.F. (2001) High-Resolution Genome-Wide Mapping of the Primary Structure of Chromatin. Cell, 144, 175-186.
http://dx.doi.org/10.1016/j.cell.2011.01.003
[8] Luger, K. (2006) Dynamic Nucleosomes. Chromosome Research, 14, 5-16.
http://dx.doi.org/10.1007/s10577-005-1026-1
[9] Bennett, G. and Peterson, C.L. (2015) SWI/SNF Recruitment to a DNA Double-Strand Break by the NuA4 and Gcn5 Histone Acetyltransferases. DNA Repair (Amst), 30, 38-45.
http://dx.doi.org/10.1016/j.dnarep.2015.03.006
[10] Kuangyu, Y., Vinesh, V., Kiran, B., Thomas, K.R. and Franklin, P.B. (2012) Genome-Wide Nucleosome Specificity and Directionality of Chromatin Remodelers. Cell, 149, 1461-1473.
http://dx.doi.org/10.1016/j.cell.2012.04.036
[11] Goldmark, J.P., Fazzio, T.G., Estep, P.W., et al. (2000) The Isw2 Chromatin Remodeling Complex Represses Early Meiotic Genes upon Recruitment by Ume6p. Cell, 103, 423-433.
http://dx.doi.org/10.1016/S0092-8674(00)00134-3
[12] Fazzio, T.G., Kooperberg, C., Goldmark, J.P., et al. (2001) Widespread Collaboration of Isw2 and Sin3-Rpd3 Chromatin Remodeling Complexes in Transcriptional Repression. Molecular and Cellular Biology, 21, 6450-6460.
http://dx.doi.org/10.1128/MCB.21.19.6450-6460.2001
[13] Kent, N.A., Karabetsou, N., Politis, P.K. and Mellor, J. (2001) In Vivo Chromatin Remodeling by Yeast ISWI Homologs Isw1p and Isw2p. Genes & Development, 15, 619-626.
http://dx.doi.org/10.1101/gad.190301
[14] Shetty, A. and Lopes, J.M. (2010) Derepression of INO1 Transcription Requires Cooperation between the Ino2p-Ino4p Heterodimer and Cbf1p and Recruitment of the ISW2 Chromatin-Remodeling Complex. Eukaryotic Cell, 9, 1845-1855.
http://dx.doi.org/10.1128/EC.00144-10
[15] Hota, S.K., Bhardwaj, S.K., Deindl, S., et al. (2013) Nucleosome Mobilization by ISW2 Requires the Concerted Action of the ATPase and SLIDE Domains. Nature Structural & Molecular Biology, 20, 222-229.
http://dx.doi.org/10.1038/nsmb.2486
[16] Krajewski, W.A. (2013) Comparison of the Isw1a, Isw1b, and Isw2 Nucleosome Disrupting Activities. Biochemistry, 52, 6940-6949.
http://dx.doi.org/10.1021/bi400634r
[17] Whitehouse, I., Rando, O.J., Delrow, J. and Tsukiyama, T. (2007) Chromatin Remodelling at Promoters Suppresses Antisense Transcription. Nature, 450, 1031-1036.
http://dx.doi.org/10.1038/nature06391
[18] Kaplan, N., Moore, I.K., Fondufe-Mittendorf, Y., Gossett, A.J., Tillo, D., Field, Y., Leproust, E.M., Hughes, T.R., Lieb, J.D., Widom, J. and Segal, E. (2009) The DNA-Encoded Nucleosome Organization of a Eukaryotic Genome. Nature, 458, 362-266.
http://dx.doi.org/10.1038/nature07667
[19] Feng, J., Dai, X., Xiang, Q., Dai, Z., Wang, J., Deng, Y. and He, C. (2010) New Insights into Two Distinct Nucleosome Distributions: Comparison of Cross-Platform Positioning Datasets in the Yeast Genome. BMC Genomics, 11, 463-468.
http://dx.doi.org/10.1186/1471-2164-11-33
[20] Brukner, I., Sanchez, R., Suck, D. and Pongor, S. (1995) Sequence-Dependent Bending Propensity of DNA as Revealed by DNase I: Parameters for Trinucleotides. The EMBO Journal, 14, 1812-1818.