脑与音乐学习
Brain and Music Learning
DOI: 10.12677/AP.2016.61009, PDF, HTML, XML, 下载: 3,174  浏览: 8,668 
作者: 南 云:北京师范大学认知神经科学与学习国家重点实验室,北京
关键词: 脑科学音乐学习音乐教育Brain Sciences Music Learning Music Education
摘要: 近年来迅猛发展的脑科学为人们认识经验对于大脑的塑造作用提供了独特而又宝贵的视角,使人们能够在行为研究的基础上,进一步探索脑可塑性相应的神经机理。本文主要综述了脑与音乐学习方面近年来的研究成果,概括了音乐学习对个体脑的重要意义以及相应脑科学方面的认识对音乐学习与教育的启示,倡导“基于脑科学的音乐学习与教育”。
Abstract: In recent years, the rapidly developing brain science has offered precious and unique perspectives on how experiences modulate the plasticity of human brain. Besides the behavioral methods, we were thus able to further understand the related neural mechanisms underlying brain plasticity. This article reviewed recent findings on brain and music learning, highlighting the importance of music learning to individual brain and the implications of brain sciences for music learning and education, and promoting “brain science-based music learning and education”.
文章引用:南云 (2016). 脑与音乐学习. 心理学进展, 6(1), 65-75. http://dx.doi.org/10.12677/AP.2016.61009

参考文献

[1] 南云, 陈雪梅, 刘文利, 周加仙(2012). 音乐教育的脑认知机制与国民素质的提升. 全球教育展望, 9, 53-59.
[2] Bangert, M., & Schlaug, G. (2006). Specialization of the Specialized in Features of External Human Brain Morphology. European Journal of Neuroscience, 24, 1832-1834.
http://dx.doi.org/10.1111/j.1460-9568.2006.05031.x
[3] Bengoetxea, H., Ortuzar, N., Bulnes, S., Rico-Barrio, I., Lafuente, J. V., & Argandona, E. G. (2012). Enriched and Deprived Sensory Experience Induces Structural Changes and Rewires Connectivity during the Postnatal Development of the Brain. Neural Plasticity, 2012, 305693.
http://dx.doi.org/10.1155/2012/305693
[4] Besson, M., Chobert, J., & Marie, C. (2011). Transfer of Training be-tween Music and Speech: Common Processing, Attention, and Memory. Frontiers in Psychology, 2, 94.
http://dx.doi.org/10.3389/fpsyg.2011.00094
[5] Blood, A. J., & Zatorre, R. J. (2001). Intensely Pleasurable Res-ponses to Music Correlate with Activity in Brain Regions Implicated in Reward and Emotion. Proceedings of the National Academy of Sciences of the United States of America, 98, 11818-11823.
http://dx.doi.org/10.1073/pnas.191355898
[6] Blood, A. J., Zatorre, R. J., Bermudez, P., & Evans, A. C. (1999). Emotional Responses to Pleasant and Unpleasant Music Correlate with Activity in Paralimbic Brain Regions. Nature Neuroscience, 2, 382-387.
http://dx.doi.org/10.1038/7299
[7] Bredekamp, V. S., & Copple, C. (1997). Develop-mentally Appropriate Practice in Early Childhood Programs. Washington, DC: NAEYC.
[8] Brown, S., Martinez, M. J., & Parsons, L. M. (2004). Passive Music Listening Spontaneously Engages Limbic and Paralimbic Systems. Neuroreport, 15, 2033-2037.
http://dx.doi.org/10.1097/00001756-200409150-00008
[9] Caria, A., Venuti, P., & de Falco, S. (2011). Functional and Dysfunctional Brain Circuits Underlying Emotional Processing of Music in Autism Spectrum Dis-orders. Cerebral Cortex, 21, 2838-2849.
http://dx.doi.org/10.1093/cercor/bhr084
[10] Chen, X., Seth, R. K., Rao, V. S., Huang, J. J., & Adelman, R. A. (2012). Effects of Music Therapy on Intravitreal Injections: A Randomized Clinical Trial. Journal of Ocular Pharmacology and Therapeutics, 28, 414-419.
http://dx.doi.org/10.1089/jop.2011.0257
[11] Chobert, J., Francois, C., Velay, J. L., & Besson, M. (2014). Twelve Months of Active Musical Training in 8- to 10-Year-Old Children Enhances the Preattentive Processing of Syllabic Duration and Voice Onset Time. Cerebral Cortex, 24, 956-967.
http://dx.doi.org/10.1093/cercor/bhs377
[12] Chobert, J., Marie, C., Francois, C., Schon, D., & Besson, M. (2011). Enhanced Passive and Active Processing of Syllables in Musician Children. Journal of Cognitive Neuroscience, 23, 3874-3887.
http://dx.doi.org/10.1162/jocn_a_00088
[13] Dawson, W. J. (2014). Benefits of Music Training Are Widespread and Lifelong: A Bibliographic Review of Their Non- Musical Effects. Medical Problems of Performing Artists, 29, 57-63.
[14] Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., & Taub, E. (1995). Increased Cortical Representation of the Fingers of the Left Hand in String Players. Science, 270, 305-307.
http://dx.doi.org/10.1126/science.270.5234.305
[15] Evers, S., & Suhr, B. (2000). Changes of the Neurotransmitter Serotonin but Not of Hormones during Short Time Music Perception. European Archives of Psychiatry and Clinical Neu-roscience, 250, 144-147.
http://dx.doi.org/10.1007/s004060070031
[16] Folland, N. A., Butler, B. E., Smith, N. A., & Trainor, L. J. (2012). Processing Simultaneous Auditory Objects: Infants’ Ability to Detect Mistuning in Harmonic Complexes. The Journal of the Acoustical Society of America, 131, 993-997.
http://dx.doi.org/10.1121/1.3651254
[17] Forgeard, M., Winner, E., Norton, A., & Schlaug, G. (2008). Practicing a Musical Instrument in Childhood Is Associated with Enhanced Verbal Ability and Nonverbal Reasoning. PloS ONE, 3, e3566.
http://dx.doi.org/10.1371/journal.pone.0003566
[18] Francois, C., Grau-Sanchez, J., Duarte, E., & Rodriguez-Fornells, A. (2015). Musical Training as an Alternative and Effective Method for Neuro-Education and Neuro-Rehabilitation. Frontiers in Psychology, 6, 475.
http://dx.doi.org/10.3389/fpsyg.2015.00475
[19] Fujioka, T., Trainor, L. J., Ross, B., Kakigi, R., & Pantev, C. (2004). Musical Training Enhances Automatic Encoding of Melodic Contour and Interval Structure. Journal of Cognitive Neuroscience, 16, 1010-1021.
http://dx.doi.org/10.1162/0898929041502706
[20] Gilleta, K. S., Vrbancic, M. I., Elias, L. J., & Saucier, D. M. (2003). A Mozart Effect for Women on a Mental Rotations Task. Perceptual and Motor Skills, 96, 1086-1092.
http://dx.doi.org/10.2466/pms.2003.96.3c.1086
[21] Giovannelli, F., Banfi, C., Borgheresi, A., Fiori, E., Innocenti, I., Rossi, S. et al. (2012). The Effect of Music on Corticospinal Excitability Is Related to the Perceived Emotion: A Transcranial Magnetic Stimulation Study. Cortex, 49, 702-710.
[22] Gordon, R. L., Fehd, H. M., & McCandliss, B. D. (2015). Does Music Training Enhance Literacy Skills? A Meta-Analysis. Frontiers in Psychology, 6, 1777.
http://dx.doi.org/10.3389/fpsyg.2015.01777
[23] Gosselin, N., Peretz, I., Johnsen, E., & Adolphs, R. (2007). Amyg-dala Damage Impairs Emotion Recognition from Music. Neuropsychologia, 45, 236-244.
http://dx.doi.org/10.1016/j.neuropsychologia.2006.07.012
[24] Gross, W., Linden, U., & Ostermann, T. (2010). Ef-fects of Music Therapy in the Treatment of Children with Delayed Speech Development—Results of a Pilot Study. BMC Complementary and Alternative Medicine, 10, 39.
[25] Halwani, G. F., Loui, P., Ruber, T., & Schlaug, G. (2011). Effects of Practice and Experience on the Arcuate Fasciculus: Comparing Singers, Instrumentalists, and Non-Musicians. Frontiers in Psychology, 2, 156.
http://dx.doi.org/10.3389/fpsyg.2011.00156
[26] Hannon, E. E., & Trehub, S. E. (2005). Metrical Categories in In-fancy and Adulthood. Psychological Science, 16, 48-55.
http://dx.doi.org/10.1111/j.0956-7976.2005.00779.x
[27] He, C., Hotson, L., & Trainor, L. J. (2009). Development of Infant Mismatch Responses to Auditory Pattern Changes between 2 and 4 Months Old. European Journal of Neuroscience, 29, 861-867.
http://dx.doi.org/10.1111/j.1460-9568.2009.06625.x
[28] Hille, K., Gust, K., Bitz, U., & Kammer, T. (2011). Asso-ciations between Music Education, Intelligence, and Spelling Ability in Elementary School. Advances in Cognitive Psy-chology, 7, 1-6.
http://dx.doi.org/10.2478/v10053-008-0082-4
[29] Ho, C., Mason, O., & Spence, C. (2007). An In-vestigation into the Temporal Dimension of the Mozart Effect: Evidence from the Attentional Blink Task. Acta Psychologica, 125, 117-128.
http://dx.doi.org/10.1016/j.actpsy.2006.07.006
[30] Hogan, D. E., & Huesman, T. (2008). Music Training and Semantic Clustering in College Students. The Journal of Genetic Psychology, 169, 322-331.
http://dx.doi.org/10.3200/GNTP.169.4.322-331
[31] Homae, F., Watanabe, H., Nakano, T., & Taga, G. (2012). Functional Development in the Infant Brain for Auditory Pitch Processing. Human Brain Mapping, 33, 596-608.
http://dx.doi.org/10.1002/hbm.21236
[32] Hughes, J. R. (2001). The Mozart Effect. Epilepsy and Behaior, 2, 396-417.
http://dx.doi.org/10.1006/ebeh.2001.0250
[33] Hutchinson, S., Lee, L. H., Gaab, N., & Schlaug, G. (2003). Cerebellar Volume of Musicians. Cerebral Cortex, 13, 943-949.
http://dx.doi.org/10.1093/cercor/13.9.943
[34] Hyde, K. L., Lerch, J., Norton, A., Forgeard, M., Winner, E., Evans, A. C. et al. (2009). Musical Training Shapes Structural Brain Development. Journal of Neuroscience, 29, 3019-3025.
http://dx.doi.org/10.1523/JNEUROSCI.5118-08.2009
[35] Jausovec, N., Jausovec, K., & Gerlic, I. (2006). The In-fluence of Mozart’s Music on Brain Activity in the Process of Learning. Clinical Neurophysiology, 117, 2703-2714.
http://dx.doi.org/10.1016/j.clinph.2006.08.010
[36] Kirschner, S., & Tomasello, M. (2009). Joint Drumming: Social Context Facilitates Synchronization in Preschool Children. Journal of Experimental Child Psychology, 102, 299-314.
http://dx.doi.org/10.1016/j.jecp.2008.07.005
[37] Koelsch, S., Schmidt, B. H., & Kansok, J. (2002). Effects of Musical Expertise on the Early Right Anterior Negativity: An Event-Related Brain Potential Study. Psychophysiology, 39, 657-663.
http://dx.doi.org/10.1111/1469-8986.3950657
[38] Kokal, I., Engel, A., Kirschner, S., & Keysers, C. (2011). Synchronized Drumming Enhances Activity in the Caudate and Facilitates Prosocial Commitment—If the Rhythm Comes Easily. PLoS ONE, 6, e27272.
http://dx.doi.org/10.1371/journal.pone.0027272
[39] Kraus, N., Hornickel, J., Strait, D. L., Slater, J., & Thompson, E. (2014). Engagement in Community Music Classes Sparks Neuroplasticity and Language Development in Children from Disadvantaged Backgrounds. Frontiers in Psychology, 5, 1403.
http://dx.doi.org/10.3389/fpsyg.2014.01403
[40] Lee, C. Y., & Hung, T. H. (2008). Identification of Mandarin Tones by English-Speaking Musicians and Nonmusicians. The Journal of the Acoustical Society of America, 124, 3235-3248.
http://dx.doi.org/10.1121/1.2990713
[41] Lints, A., & Gadbois, S. (2003). Is Listening to Mozart the Only Way to Enhance Spatial Reasoning? Perceptual and Motor Skills, 97, 1163-1174.
[42] Lotze, M., Scheler, G., Tan, H. R., Braun, C., & Birbaumer, N. (2003). The Musician’s Brain: Functional Imaging of Amateurs and Professionals during Performance and Imagery. Neuroimage, 20, 1817-1829.
http://dx.doi.org/10.1016/j.neuroimage.2003.07.018
[43] Magne, C., Schon, D., & Besson, M. (2006). Musician Children Detect Pitch Violations in Both Music and Language Better Than Nonmusician Children: Behavioral and Elec-trophysiological Approaches. Journal of Cognitive Neuroscience, 18, 199-211.
http://dx.doi.org/10.1162/jocn.2006.18.2.199
[44] Menon, V., & Levitin, D. J. (2005). The Rewards of Music Lis-tening: Response and Physiological Connectivity of the Mesolimbic System. Neuroimage, 28, 175-184.
http://dx.doi.org/10.1016/j.neuroimage.2005.05.053
[45] Meyer, M., Elmer, S., Ringli, M., Oechslin, M. S., Baumann, S., & Jancke, L. (2011). Long-Term Exposure to Music Enhances the Sensitivity of the Auditory System in Children. European Journal of Neuroscience, 34, 755-765.
http://dx.doi.org/10.1111/j.1460-9568.2011.07795.x
[46] Moghimi, S., Kushki, A., Power, S., Guerguerian, A. M., & Chau, T. (2012). Automatic Detection of a Prefrontal Cortical Response to Emotionally Rated Music Using Multi-Channel Near-Infrared Spectroscopy. Journal of Neural Engineering, 9, Article ID: 026022.
http://dx.doi.org/10.1088/1741-2560/9/2/026022
[47] Moreno, S., & Bidelman, G. M. (2014). Examining Neural Plasticity and Cognitive Benefit through the Unique Lens of Musical Training. Hearing Research, 308, 84-97.
http://dx.doi.org/10.1016/j.heares.2013.09.012
[48] Nan, Y., & Friederici, A. D. (2013). Differential Roles of Right Temporal Cortex and Broca’s Area in Pitch Processing: Evidence from Music and Mandarin. Human Brain Mapping, 34, 2045-2054.
http://dx.doi.org/10.1002/hbm.22046
[49] Newman, J., Rosenbach, J. H., Burns, K. L., Latimer, B. C., Matocha, H. R., & Vogt, E. R. (1995). An Experimental Test of “The Mozart Effect”: Does Listening to His Music Improve Spatial Ability? Perceptual and Motor Skills, 81, 1379-1387.
[50] Oechslin, M. S., Imfeld, A., Loenneker, T., Meyer, M., & Jancke, L. (2009). The Plasticity of the Superior Longitudinal Fasciculus as a Function of Musical Expertise: A Diffusion Tensor Imaging Study. Frontiers in Human Neuroscience, 3, 76.
[51] Omar, R., Henley, S. M., Bartlett, J. W., Hailstone, J. C., Gordon, E., Sauter, D. A. et al. (2011). The Structural Neuroanatomy of Music Emotion Recognition: Evidence from Frontotemporal Lobar Degeneration. Neuroimage, 56, 1814-1821.
http://dx.doi.org/10.1016/j.neuroimage.2011.03.002
[52] Parbery-Clark, A., Strait, D. L., Anderson, S., Hittner, E., & Kraus, N. (2011). Musical Experience and the Aging Auditory System: Implications for Cognitive Abilities and Hearing Speech in Noise. PLoS ONE, 6, e18082.
http://dx.doi.org/10.1371/journal.pone.0018082
[53] Parbery-Clark, A., Tierney, A., Strait, D. L., & Kraus, N. (2012). Musicians Have Fine-Tuned Neural Distinction of Speech Syllables. Neuroscience, 210, 111-119.
http://dx.doi.org/10.1016/j.neuroscience.2012.05.042
[54] Perani, D., Saccuman, M. C., Scifo, P., Spada, D., An-dreolli, G., Rovelli, R. et al. (2010). Functional Specializations for Music Processing in the Human Newborn Brain. Pro-ceedings of the National Academy of Sciences of the United States of America, 107, 4758-4763.
http://dx.doi.org/10.1073/pnas.0909074107
[55] Poeggel, G., Nowicki, L., & Braun, K. (2003). Early Social Depri-vation Alters Monoaminergic Afferents in the Orbital Prefrontal Cortex of Octodon degus. Neuroscience, 116, 617-620.
http://dx.doi.org/10.1016/S0306-4522(02)00751-0
[56] Rauscher, F. H., & Shaw, G. L. (1998). Key Components of the Mozart Effect. Perceptual and Motor Skills, 86, 835-841.
http://dx.doi.org/10.2466/pms.1998.86.3.835
[57] Satoh, M., Nakase, T., Nagata, K., & Tomimoto, H. (2011). Musical Anhedonia: Selective Loss of Emotional Experience in Listening to Music. Neurocase, 17, 410-417.
http://dx.doi.org/10.1080/13554794.2010.532139
[58] Schlaug, G., Jancke, L., Huang, Y., Staiger, J. F., & Steinmetz, H. (1995). Increased Corpus Callosum Size in Musicians. Neuropsychologia, 33, 1047-1055.
http://dx.doi.org/10.1016/0028-3932(95)00045-5
[59] Schlaug, G., Jancke, L., Huang, Y., & Steinmetz, H. (1995). In Vivo Evidence of Structural Brain Asymmetry in Musicians. Science, 267, 699-701.
http://dx.doi.org/10.1126/science.7839149
[60] Schon, D., Magne, C., & Besson, M. (2004). The Music of Speech: Music Training Facilitates Pitch Processing in Both Music and Language. Psychophysiology, 41, 341-349.
http://dx.doi.org/10.1111/1469-8986.00172.x
[61] Schulz, M., Ross, B., & Pantev, C. (2003). Evidence for Train-ing-Induced Crossmodal Reorganization of Cortical Functions in Trumpet Players. Neuroreport, 14, 157-161.
http://dx.doi.org/10.1097/00001756-200301200-00029
[62] Spintge, R. (2000). Music and Anesthesia in Pain Ther-apy. Anästhesiologie, Intensivmedizin, Notfallmedizin, Schmerztherapie: AINS, 35, 254-261.
[63] Stiles, J. (2000). Neural Plasticity and Cognitive Development. Developmental Neuropsychology, 18, 237-272.
http://dx.doi.org/10.1207/S15326942DN1802_5
[64] Strait, D. L., Slater, J., O’Connell, S., & Kraus, N. (2015). Mu-sic Training Relates to the Development of Neural Mechanisms of Selective Auditory Attention. Developmental Cognitive Neuroscience, 12, 94-104.
http://dx.doi.org/10.1016/j.dcn.2015.01.001
[65] Sutoo, D., & Akiyama, K. (2004). Music Improves Dopaminergic Neurotransmission: Demonstration Based on the Effect of Music on Blood Pressure Regulation. Brain Research, 1016, 255-262.
http://dx.doi.org/10.1016/j.brainres.2004.05.018
[66] Tierney, A. T., Krizman, J., & Kraus, N. (2015). Music Training Alters the Course of Adolescent Auditory Development. Proceedings of the National Academy of Sciences of the United States of America, 112, 10062-10067.
http://dx.doi.org/10.1073/pnas.1505114112
[67] Trainor, L. (2008). Science & Music: The Neural Roots of Music. Nature, 453, 598-599.
http://dx.doi.org/10.1038/453598a
[68] Vaquero, L., Hartmann, K., Ripolles, P., Rojo, N., Sierpowska, J., Francois, C. et al. (2015). Structural Neuroplasticity in Expert Pianists Depends on the Age of Musical Training Onset. Neuroimage, 126, 106-119.
http://dx.doi.org/10.1016/j.neuroimage.2015.11.008
[69] Vrieze, E., Ceccarini, J., Pizzagalli, D. A., Bormans, G., Vandenbulcke, M., Demyttenaere, K. et al. (2011). Measuring Extrastriatal Dopamine Release during a Reward Learning Task. Human Brain Mapping, 34, 575-586.
[70] Winterfeld, K. T., Teuchert-Noodt, G., & Dawirs, R. R. (1998). Social Environment Alters Both Ontogeny of Dopamine Innervation of the Medial Prefrontal Cortex and Maturation of Working Memory in Gerbils (Meriones unguiculatus). Journal of Neuroscience Research, 52, 201-209.
http://dx.doi.org/10.1002/(SICI)1097-4547(19980415)52:2<201::AID-JNR8>3.0.CO;2-E
[71] Wise, R. A. (2004). Dopamine, Learning and Motivation. Nature Reviews Neuroscience, 5, 483-494.
http://dx.doi.org/10.1038/nrn1406
[72] Wong, P. C., Skoe, E., Russo, N. M., Dees, T., & Kraus, N. (2007). Musical Experience Shapes Human Brainstem Encoding of Linguistic Pitch Patterns. Nature Neuroscience, 10, 420-422.
http://dx.doi.org/10.1038/nn1872
[73] Zalewsky, S., Vinker, S., Fiada, I., Livon, D., & Kitai, E. (1998). Background Music in the Family Physician’s Surgery: Patient Reactions. Harefuah, 135, 96-97, 168, 167.
[74] Zatorre, R. J., & Sa-limpoor, V. N. (2013). From Perception to Pleasure: Music and Its Neural Substrates. Proceedings of the National Academy of Sciences of the United States of America, 110, 10430-10437.
http://dx.doi.org/10.1073/pnas.1301228110
[75] Zentner, M., & Eerola, T. (2010). Rhythmic Engagement with Music in Infancy. Proceedings of the National Academy of Sciences of the United States of America, 107, 5768-5773.
http://dx.doi.org/10.1073/pnas.1000121107