长江干流武汉段及汉江下游水葫芦应急调查及分析
Eichhornia crassipes Emergency Investigation in the Wuhan Section of Changjiang River and Hanjiang River Downstream
DOI: 10.12677/JWRR.2016.51010, PDF, HTML, XML, 下载: 2,291  浏览: 8,355  科研立项经费支持
作者: 钱 宝, 卞俊杰, 王 琪, 何善鹏:长江水利委员会水文局,湖北 武汉
关键词: 水葫芦应急监测汉江水质Eichhornia crassipes Emergency Monitoring Hanjiang River Water Quality
摘要: 自2015年8月起,长江干流武汉段及汉江下游爆发水葫芦入侵现象。长江水利委员会水文局组织应急调查小组进行实地调查。结果发现,汉江水葫芦主要由涵闸河等汉江支流排入,而汉江支流水葫芦主要来源于汉江下游平原河网地区。在汛期水葫芦生长旺盛期间,突发性的强降水导致内河水位抬高,从而将集聚于静水中的水葫芦排入河网,顺流而下,直至长江。本次爆发的水葫芦事件虽未对长江干流水质产生较大影响,但能引起有关部门的高度关注。
Abstract: In August 2015, there was an outbreak of Eichhornia crassipes in the Wuhan section of Changjiang River and Hanjiang River downstream. The Bureau of Hydrology, Changjiang River Water Resources Commission immediately launched the emergency monitoring plan to conduct field survey. Results of the survey show that Eichhornia crassipes in the Wuhan section of Changjiang River is mainly from the tributaries of Hanjiang River, such as Hanzha River. The Eichhornia crassipes in the branch of Hanjiang River mainly come from the lower reaches of Hanjiang River in plain river network area. In the flood period when Eichhornia crassipes grows vigorously, the sudden heavy rainfall leads to the river water level rising, which will discharge Eichhornia crassipes gathering in the still water into the river downstream, until Changjiang River. The outbreak of Eichhornia crassipes event although does not have a greater impact to the water quality of Changjiang River, it has already caused great attention of the concerned department.
文章引用:钱宝, 卞俊杰, 王琪, 何善鹏. 长江干流武汉段及汉江下游水葫芦应急调查及分析[J]. 水资源研究, 2016, 5(1): 79-85. http://dx.doi.org/10.12677/JWRR.2016.51010

参考文献

[1] 万志刚, 沈颂东, 顾福根等. 几种水生维管束植物对水中氮、磷吸收率的比较[J]. 淡水渔业, 2004, 34(5): 6-8. WAN Zhigang, SHEN Songdong, GU Fugen, et al. Comparison of the absorption rate of nitrogen and phosphorus in different kinds of aquatic vascular plants. Freshwater Fisheries, 2004, 34(5): 6-8. (in Chinese)
[2] 周庆, 韩士群, 严少华等. 富营养化湖泊规模化种养的水葫芦与浮游藻类的相互影响[J]. 水生生物学报, 2012, 36(4): 783-791. ZHOU Qing, HAN Shiqun, YAN Shaohua, et al. The mutual effect between phytoplankton and water hyacinth planted on a large scale in the eutrophic lake. ACTA HYDROBIOLOGICA SINICA, 2012, 36(4): 783-791. (in Chi-nese)
[3] MILNER-GULLAND, E. J. Knowing the value of nature. Nature, 2001, 410(6830): 751-752.
http://dx.doi.org /10.1038/35071161
[4] SL219-2013, 水环境监测规范[S]. 北京: 中国水利水电出版社, 2013. SL219-2013, Regulation for water environmental monitoring. Beijing: China WaterPower Press, 2013. (in Chinese)
[5] 国家环境保护总局编. 水和废水监测分析方法[M]. 第4版. 北京: 中国环境科学出版社, 2002. The State Environmental Protection Administration. Water and wastewater monitoring and analysis method. 4th Edition. Beijing: China Environmental Science Press, 2002. (in Chinese)
[6] GB3838-2002, 地表水环境质量标准[S]. 北京: 中国环境科学出版社, 2002. GB3838-2002, The surface water environmental quality standard. Beijing: China Environmental Science Press, 2002. (in Chi-nese)
[7] 黄伟, 朱旭宇, 曾江宁等. 氮磷比对浙江近岸浮游植物群落结构影响的实验研究[J]. 海洋学报, 2012, 34(5): 128-138. HUANG Wei, ZHU Xuyu, ZENG Jiangning, et al. Microcosm experiments on the influence of different N/P ratios on phytop-lankton community structure in the coast of Zhejiang Province. Acta Oceanologica Sinica, 2012, 34(5): 128-138. (in Chinese)
[8] 胡高平, 卞俊杰. 三峡水库蓄水前后干流汉口站水质变化分析[J]. 人民长江, 2013, 44(2): 89-91. HU Gaoping, BIAN Junjie. Analysis of the Three Gorges Reservoir before and after the change of water quality in Hankou Station. Yangtze River, 2013, 44(2): 89-91. (in Chinese)