一个正定不等式的最佳参数
A Sharp Parameter Value of a Positive Definite Inequality
DOI: 10.12677/AAM.2016.51006, PDF, HTML, XML,   
作者: 冯贝叶:中国科学院应用数学研究所,北京
关键词: 最佳参数正定不等式Sharp Parameter Value Positive Definite Inequality
摘要: 本文解决了参考文献[1]中提出的一个公开问题,用初等方法确定了一个正定不等式成立的最佳参数值。
Abstract: In this paper, we solved an open problem proposed in [1]. We get a sharp parameter value of a positive definite inequality by elementary method.
文章引用:冯贝叶. 一个正定不等式的最佳参数[J]. 应用数学进展, 2016, 5(1): 41-44. http://dx.doi.org/10.12677/AAM.2016.51006

参考文献

[1] Marshall, M. (2008) Positive Polynomials and Sums of Squares. American Mathematical Society, SURV Vol. 146.
[2] Rajwade, A.R. (1993) London Mathematical Society Lecture Note Series. Cambridge University Press, London.
http://dx.doi.org/10.1017/CBO9780511566028
[3] Scheiderer, C. (2000) Sums of Squares of Regular Functions on Real Algebraic Varieties. Transactions of the American Mathematical Society, 352, 1039-1069.
http://dx.doi.org/10.1090/S0002-9947-99-02522-2
[4] Cassels, J.W.S. (1964) On the Representation of Rational Functions as Suns of Squares. Acta Arithmetica, 9, 79-82.
[5] 冯贝叶. 四次函数实零点的完全判据和正定条件[J]. 应用数学学报, 2006, 29(3): 454-466.