α-Fe2O3纳米材料的固相合成及光催化降解亚甲基蓝性能
Solid-State Synthesis of α-Fe2O3 Nanomaterials and Photocatalytic Degradation Performance on Methylene Blue
DOI: 10.12677/NAT.2016.61003, PDF, HTML, XML, 下载: 2,791  浏览: 7,652  科研立项经费支持
作者: 王碧军, 刘劲松*, 李子全, 黄洁文, 丛孟启, 冯 冰, 陈建康:南京航空航天大学,材料科学与技术学院,江苏 南京;李云朋:中国科学院,福建物质结构研究所,福建 福州;朱孔军, 裘进浩:南京航空航天大学,机械结构力学及控制国家重点实验室,江苏 南京
关键词: 固相合成α-Fe2O3纳米材料光催化Solid-State Synthesis α-Fe2O3 Nanomaterial Photocatalysis
摘要: 采用固相法首先制备前驱体,然后不同温度热处理得到α-Fe2O3纳米材料,采用XRD、FTIR、FESEM、DRS等多种表征手段分析了材料的晶体结构、微观形貌与光学性能。结果表明,热处理温度升高,α-Fe2O3纳米材料粒径逐渐增大,其带隙宽度也逐渐升高,但均小于体相α-Fe2O3的带隙宽度(2.2 eV)。500℃热处理2 h所得α-Fe2O3纳米材料具有最高的可见光光催化效率和光降解速率常数,其分别为70.60%和6.78 × 10−3 min−1,太高或太低的热处理温度均会导致光催化效率降低,这主要受带隙大小和电子–空穴复合机率影响。
Abstract: Precursors were synthesized by a solid-state synthesis method. And α-Fe2O3 nanomaterials were obtained by thermal decomposition of precursors at different calcination temperatures. The crystal structure, microstructure morphology and optical properties of the α-Fe2O3 nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Field scanning electron microscopy (FESEM), and UV-vis diffuse reflectance spectroscopy (DRS). The results show that the energy gap and particle size of the α-Fe2O3 nanomaterials increase with annealing temperature. But they are all less than bulk α-Fe2O3 (2.2 eV). The α-Fe2O3 nanoparticles prepared at 500˚C for 2 h exhibit the highest visible-light photocatalytic efficiency of 70.60% and photodegradation rate constant, k, of 6.78 × 10−3 min−1, respectively. Too high or too low heat treatment temperature will result in the decrease of photocatalytic efficiency, which is mainly affected by band gap and electron-hole recombination probability.
文章引用:王碧军, 刘劲松, 李子全, 黄洁文, 李云朋, 丛孟启, 冯冰, 陈建康, 朱孔军, 裘进浩. α-Fe2O3纳米材料的固相合成及光催化降解亚甲基蓝性能[J]. 纳米技术, 2016, 6(1): 14-21. http://dx.doi.org/10.12677/NAT.2016.61003

参考文献

[1] Hashimoto, K., Irie, H. and Fujishima, A. (2005) TiO2 Photocatalysis: A Historical Overview and Future Prospects. Japanese Journal of Applied Physics, 44, 8269-8285.
http://dx.doi.org/10.1143/JJAP.44.8269
[2] Roy, S.C., Varghese, O.K., Maggie, P. and Grimes, C.A. (2010) Toward Solar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons. Acs Nano, 4, 1259-1278.
http://dx.doi.org/10.1021/nn9015423
[3] Ma, J.M., Lian, J.B., Duan, X.C., Liu, X.D. and Zheng, W.J. (2010) Alpha-Fe2O3: Hydrothermal Synthesis, Magnetic and Electrochemical Properties. Journal of Physical Chemistry C, 114, 10671-10676.
http://dx.doi.org/10.1021/jp102243g
[4] Xu, J.S. and Zhu, Y.J. (2011) Hierarchically Hollow Microspheres Self-Assembled with Nanosheets: Surfactant-Free Solvothermal Synthesis, Magnetic and Photocatalytic Properties. Crys-tEngComm, 13, 5162-5169.
http://dx.doi.org/10.1039/c1ce05252g
[5] Townsend, T.K., Sabio, E.M., Browning, N.D. and Osterloh, F.E. (2011) Photocatalytic Water Oxidation with Suspended Alpha-Fe2O3 Particles-Effects of Nanoscaling. Energy & Environmental Science, 4, 4270-4275.
http://dx.doi.org/10.1039/c1ee02110a
[6] Dang, S.N., Lu, S.X., Xu, W.G. and Sa, J. (2008) Dark-Degradation of Reactive Brilliant Blue X-BR in Aqueous Solution Using Alpha-Fe2O3. Journal of Non-Crystalline Solids, 354, 5018-5021.
http://dx.doi.org/10.1016/j.jnoncrysol.2008.07.027
[7] Bharathi, S., Nataraj, D., Senthil, K. and Masuda, Y. (2013) Shape-Controlled Synthesis of Alpha-Fe2O3 Nanostructures: Engineering Their Surface Properties for Improved Photocatalytic Degradation Efficiency. Journal of Nanoparticle Research, 15, 1-13.
http://dx.doi.org/10.1007/s11051-012-1346-y
[8] 景苏, 鲁新宇. 室温固相法合成纳米FeOOH Fe2O3[J]. 南京工业大学学报: 自然科学版, 2002, 24(6): 52-55.
[9] Xu, B., Huang, B.B., Cheng, H., Wang, Z., Qin, X. and Zhang, X. (2012) Alpha-Fe2O3 Hollow Structures: Formation of Single Crystalline Thin Shells. Chemical Communications, 48, 6529-6531.
http://dx.doi.org/10.1039/c2cc33032f
[10] Yang, T., Huang, Z., Liu, Y., Fang, M., Ouyang, X. and Hu, M. (2014) Controlled Synthesis of Porous FeCO3 Microspheres and the Conversion to α-Fe2O3 with Unconventional Morphology. Ceramics International, 40, 11975-11983.
http://dx.doi.org/10.1016/j.ceramint.2014.04.035
[11] Chaudhari, N.K. and Yu, J.S. (2008) Size Control Synthesis of Uniform β-FeOOH to High Coercive Field Porous Magnetic α-Fe2O3 Nanorods. Journal of Physical Chemistry C, 112, 19957-19962.
http://dx.doi.org/10.1021/jp808589y
[12] Song, H.J., Zhang, X.Q, Chen, T. and Jia, X.H. (2014) One-Pot Synthesis of Bundle-Like β-FeOOH Nanorods and Their Transformation to Porous α-Fe2O3 Microspheres. Ceramics International, 40, 15595-15602.
http://dx.doi.org/10.1016/j.ceramint.2014.07.037
[13] Mishra, M. and Chun, D.M. (2015) Alpha-Fe2O3 as a Photocatalytic Material: A Review. Applied Catalysis A: General, 498, 126-141.
http://dx.doi.org/10.1016/j.apcata.2015.03.023
[14] 徐如人. 无机合成与制备化学[M]. 北京: 高等教育出版社, 2001: 128-162.
[15] 周益明, 忻新泉. 低热固相合成化学[J]. 无机化学学报, 2004, 15(3): 273-292.
[16] 贾殿赠. 纳米材料的低热固相自组装及机理研究[J]. 四川大学学报: 自然科学版, 2005, 42(2): 44-45.
[17] 刘劲松, 李子全, 曹洁明. 金属氧化物硫化物纳米材料的低温固相合成[J]. 化学进展, 2009, 21(12): 2542-2550.