氮化碳负载铂催化剂的制备、表征及对肉桂醛加氢的催化性能
Preparation and Characterization of Carbon Nitride Supported Pt Catalyst and Its Catalytic Performance on Hydrogenation of Cinnamaldehyde
DOI: 10.12677/JAPC.2016.51003, PDF, HTML, XML, 下载: 2,375  浏览: 6,481 
作者: 王呈呈, 孔丽萍, 赵俊俊, 朱伟东, 钟依均, 叶向荣:浙江师范大学物理化学研究所,先进催化材料教育部重点实验室,浙江 金华
关键词: 氮化碳Pt催化剂肉桂醛选择性加氢Carbon Nitride Pt Catalyst Cinnamic Aldehyde Selective Hydrogenation
摘要: 通过尿素的高温聚合制备了片层状氮化碳g-C3N4,采用乙二醇还原法载铂得到Pt/g-C3N4催化剂。以X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅里叶变换红外光谱(FT-IR)、比表面与孔隙度分析和电感耦合等离子体原子发射光谱(ICP-AES)等对所制备催化剂进行了表征,并在肉桂醛加氢反应中考察了其催化性能。结果表明,载体g-C3N4含有大量的含N基团,能有效稳定金属纳米粒子;Pt纳米粒子均匀分散在g-C3N4表面,且Pt粒径在2~3 nm之间;载体煅烧温度对催化剂的择性加氢性能有明显影响,550℃煅烧后的g-C3N4,所负载Pt在较温和的条件下表现出较明显的活性,肉桂醛转化率为30%,肉桂醇选择性为66%左右。重复使用3次,催化剂活性基本不变,具有良好的稳定性。
Abstract: Layered carbon nitride g-C3N4 was prepared through high temperature polymerization of urea, and highly dispersive Pt nanoparticles were loaded onto g-C3N4 by ethylene glycol reduction to fabricate Pt/g-C3N4 catalyst. The catalyst was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, surface area/porosity analysis and inductively coupled plasma atomic emission spectrometer (ICP-AES), and tested in the hydrogenation of cinnamelaldehyde. The results indicated that the support contains a large amount of N-containing groups which help to stabilize metal nanoparticles effectively; Pt nanoparticles uniformly dispersed in the surface of the g-C3N4 and its size is between 2 - 3 nm; the calcination temperature in g-C3N4 preparation had a significant effect on the performance of the catalyst for selective hydrogenation. Pt supported on g-C3N4 being calcinated at 550˚C exhibited an appreciable activity, 30% conversion of cinnamic aldehyde and 66% selectivity for cinnamic alcohol under relatively mild condition. No obvious deterioration of the activity is observed after three times of usage, implying a good stability of the catalyst.
文章引用:王呈呈, 孔丽萍, 赵俊俊, 朱伟东, 钟依均, 叶向荣. 氮化碳负载铂催化剂的制备、表征及对肉桂醛加氢的催化性能[J]. 物理化学进展, 2016, 5(1): 18-26. http://dx.doi.org/10.12677/JAPC.2016.51003

参考文献

[1] 武文涛, 贾颖萍, 尹静梅, 等. 肉桂醛选择性加氢合成肉桂醇的研究进展[J]. 化工中间体, 2009(4): 1-5.
[2] Dong, Z., Le, X., Liu, Y., et al. (2014) Metal Organic Framework Derived Magnetic Porous Carbon Compo-site Supported Gold and Palladium Nanoparticles as Highly Efficient and Recyclable Catalysts for Reduction of 4-Nitrophenol and Hydrodechlorination of 4-Chlorophenol. Journal of Materials Chemistry A, 2, 18775-18785.
http://dx.doi.org/10.1039/C4TA04010D
[3] Tuaev, X., Paraknowitsch, J.P., Illgen, R., et al. (2012) Nitro-gen-Doped Coatings on Carbon Nanotubes and Their Stabilizing Effect on Pt Nanoparticles. Physical Chemistry Chemical Physics, 14, 6444-6447.
http://dx.doi.org/10.1039/c2cp40760d
[4] Dong, F., Wu, L., Sun, Y., et al. (2011) Efficient Synthesis of Poly-meric g-C3N4 Layered Materials as Novel Efficient Visible Light Driven Photocatalysts. Journal of Materials Chemistry, 21, 15171-15174.
http://dx.doi.org/10.1039/c1jm12844b
[5] Lyth, S.M., Nabae, Y., Moriya, S., et al. (2009) Carbon Nitride as a Nonprecious Catalyst for Electrochemical Oxygen Reduction. The Journal of Physical Chemistry C, 113, 20148-20151.
http://dx.doi.org/10.1021/jp907928j
[6] Li, Y., Xu, X., Zhang, P., et al. (2013) Highly Selective Pd@ mpg-C3N4 Catalyst for Phenol Hydrogenation in Aqueous Phase. RSC Advances, 3, 10973-10982.
http://dx.doi.org/10.1039/c3ra41397g
[7] Deng, D., Yang, Y., Gong, Y., et al. (2013) Palladium Nanoparticles Supported on mpg-C3N4 as Active Catalyst for Semihydrogenation of Phenylacetylene under Mild Conditions. Green Chemistry, 15, 2525-2531.
http://dx.doi.org/10.1039/c3gc40779a
[8] Su, F., Tian, Z., Poh, C.K., et al. (2010) Pt Nanoparticles Supported on Nitrogen-Doped Porous Carbon Nanospheres as an Electrocatalyst for Fuel Cells†. Chemistry of Materials, 22, 832-839.
http://dx.doi.org/10.1021/cm901542w
[9] Abid, M., Paul-Boncour, V. and Touroude, R. (2006) Pt/CeO2 Catalysts in Crotonaldehyde Hydrogenation: Selectivity, Metal Particle Size and SMSI States. Applied Catalysis A General, 297, 48-59.
http://dx.doi.org/10.1016/j.apcata.2005.08.048
[10] Yan, S.C., Li, Z.S. and Zou, Z.G. (2009) Photodegradation Performance of g-C3N4 Fabricated by Directly Heating Melamine. Langmuir, 25, 10397-10401.
http://dx.doi.org/10.1021/la900923z
[11] Zhao, Y., Tang, R. and Huang, R. (2015) Palladium Supported on Gra-phitic Carbon Nitride: An Efficient and Recyclable Heterogeneous Catalyst for Reduction of Nitroarenes and Suzuki Coupling Reaction. Catalysis Letters, 145, 1961-1971.
http://dx.doi.org/10.1007/s10562-015-1600-x
[12] Li, Y., Xu, X., Zhang, P., et al. (2013) Highly Selective Pd@mpg-C3N4 Catalyst for Phenol Hydrogenation in Aqueous Phase. RSC Advances, 3, 10973-10982.
http://dx.doi.org/10.1039/c3ra41397g
[13] Thomas, A., Fischer, A., Goettmann, F., et al. (2008) Graphitic Carbon Nitride Materials: Variation of Structure and Morphology and Their Use as Metal-Free Catalysts. Journal of Materials Chemistry, 18, 4893-4908.
http://dx.doi.org/10.1039/b800274f
[14] Zhao, H., Li, L., Yang, J., et al. (2008) Nanostructured Polypyr-role/Carbon Composite as Pt Catalyst Support for Fuel Cell Applications. Journal of Power Sources, 184, 375-380.
http://dx.doi.org/10.1016/j.jpowsour.2008.03.024