SF6电弧宏微观模型研究进展
Development of Macroscopic and Microscopic Model of SF6 Arc
DOI: 10.12677/JEE.2016.41001, PDF, HTML, XML, 下载: 2,248  浏览: 6,826 
作者: 赵 谡, 焦俊韬, 赵小令, 肖登明:上海交通大学电气工程系,上海;J. D. Yan:利物浦大学,利物浦,英国
关键词: SF6电弧宏观模型微观模型SF6 Arc Macroscopic Model Microscopic Model
摘要: SF6断路器是电力系统中的重要开断设备,断路器的稳定性与可靠性事关电力系统的安全运行。但是SF6电弧是电场、磁场、温度场以及气流场等多场耦合互相影响不断变化的复杂过程,因此虽然国内外已有很多研究者对SF6电弧进行了多方位的研究,但是已有的研究都是建立在假设和实验室设定的条件下的。本文基于国内外研究者对SF6的研究现状以及方向进行了整理归纳,介绍了SF6研究中宏观和微观模型,并对SF6电弧的未来研究方向以及亟待解决的问题进行了探讨。
Abstract: SF6 circuit breaker is important breaking equipment in power system; the operation of the circuit breaker is related to the stability and reliability of the power system. SF6 arc is a complex multi-field coupling process evolving electric field, magnetic field, temperature field and flow field. Although there are a lot of domestic and foreign researchers conducting studies of SF6 arc, those previous studies are all based on the assumptions and under the conditions of the specific laboratory setting. Based on the research status of SF6 arc, this paper introduces the development of macroscopic and microscopic models in SF6 arc and discusses the future research directions and problems to be solved in SF6 arc.
文章引用:赵谡, 焦俊韬, 赵小令, 肖登明, J. D.Yan. SF6电弧宏微观模型研究进展[J]. 电气工程, 2016, 4(1): 1-5. http://dx.doi.org/10.12677/JEE.2016.41001

参考文献

[1] Frost, L.S. and Liebermanm, R.W. (1971) Composition and Transport Properties of SF6 and Their Use in a Simplified Enthalpy Flow Arc Model. Proceedings of the IEEE, 59, 474-485.
http://dx.doi.org/10.1109/PROC.1971.8206
[2] Cowley, M.D. (1974) Integral Method of Arc Analysis. Journal of Applied Physics, 7, 2218-2222.
[3] Chervy, B., Gleizes, A. and Razafinimanana, M. (1994) Thermodynamic Properties and Transport Coefficients in SF6-Cu Mixtures at Temperatures of 300 - 30000 K and Pressures of 0.1 - 1 Mpa. Journal of Physics D-Applied Physics, 27, 1193-1206.
http://dx.doi.org/10.1088/0022-3727/27/6/017
[4] Chervy, B. (1996) The Influence of the Presence of Tungsten of SF6 Arc Plasmas. Journal of Physics D-Applied Physics, 29, 2156-2161.
http://dx.doi.org/10.1088/0022-3727/29/8/014
[5] Paul, K.C., Sakuta, T. and Takashima, T. (1997) Transport and Thermodynamic Properties of SF6 Gas Contaminated by PTFE Reinforced with Al2O3 and BN Particles. IEEE Transactions on Plasma Science, 25, 786-798.
http://dx.doi.org/10.1109/27.640704
[6] Hertz, W., Motschma, H. and Wittel, H. (1971) Investigations of Properties of SF6 as an Arc Quenching Medium. Proceedings of the IEEE, 59, 485-491.
http://dx.doi.org/10.1109/PROC.1971.8207
[7] Lowke, J.J., Morrow, R. and Haidar, J. (1997) A Simplified Unified Theory of Arcs and Their Electrodes. Journal of Physics D-Applied Physics, 30, 2033-2042.
http://dx.doi.org/10.1088/0022-3727/30/14/011
[8] Gleizes, A., Rahmani, B., Gonzalez, J.J. and Liani, B. (1993) Calculation of Net Emission Coefficient of Thermal Plasmas in Mixtures of Gas with Metallic Vapor. Journal of Physics D-Applied Physics, 26, 1921-1927.
http://dx.doi.org/10.1088/0022-3727/26/11/013
[9] Fang, M.T.C., Zhuang, Q. and Guo, X.J. (1994) Current Zero Behavior of an SF6 Gas Blast Arc. Part II: Turbulent Flow. Journal of Physics D-Applied Physics, 27, 74-83.
http://dx.doi.org/10.1088/0022-3727/27/1/011
[10] Zhang, J.L., Yan, J.D., Murphy, A.B., Hall, W. and Fang, M. (2002) Computational Investigation of Arc Behavior in an Auto-Expansion Circuit Breaker Contaminated by Ablated Nozzle Vapor. IEEE Transactions on Plasma Science, 30, 706-719.
http://dx.doi.org/10.1109/TPS.2002.1024273
[11] Zhang, J.F., Fang, M.T.C. and Newland, D.B. (1987) Theoretical Investigation of a 2 kA Arc in a Supersonic Nozzle. Journal of Physics D-Applied Physics, 20, 368-379.
http://dx.doi.org/10.1088/0022-3727/20/3/020
[12] 王立森. SF6电弧输运特性对灭弧室内电场的影响研究[D]: [硕士学位论文]. 沈阳: 沈阳工业大学, 2013.