木葡糖酸醋杆菌株型对细菌纤维素产量与性能的影响
Effects of Different Gluconacetobacter xylinus Strains on Yield and Properties of Bacterial Cellulose
DOI: 10.12677/BP.2016.61002, PDF, HTML, XML,  被引量 下载: 2,441  浏览: 7,113  国家自然科学基金支持
作者: 张少瑞, 陈琳, 洪枫*:东华大学,化学化工与生物工程学院,微生物工程与工业生物技术研究组,上海;钟春燕:海南光宇生物科技有限公司,海南 海口
关键词: 细菌纤维素木葡糖酸醋杆菌菌株影响Bacterial Cellulose Gluconacetobacter xylinus Effect of Strain Type
摘要: 木葡糖酸醋杆菌是重要的细菌纤维素生产菌。该课题以40 g/L葡萄糖为碳源,研究了静态培养时5株菌种对细菌纤维素产量与性能的影响。采用扫描电镜、X射线衍射和万能材料测试机分别对细菌纤维素进行了形貌观察、结晶度表征以及力学性能测试。研究结果表明:细菌纤维素的产量排序依次为DHU-ZCY-1 (3.9 g/L) > DHU-ATCC-1 (2.6 g/L) > DHU-ZGD-1 (2.3 g/L) > DHU-YQ-1 (1.7 g/L) > ATCC23770 (0.6 g/L);株型对细菌纤维素的含水率和结晶度基本无影响;不同菌株产的细菌纤维素湿膜的断裂拉伸强度大小依次如下:DHU-ZGD-1 (350 KPa) > DHU-ZCY-1 (150 KPa) > DHU-YQ-1 (68 KPa) > DHU-ATCC-1 (56 KPa) > ATCC23770 (35 KPa);菌株对细菌纤维素的微观结构影响甚微,纤维直径大都分布在65~91 nm之间。
Abstract: Gluconacetobacter xylinus is an important bacterial cellulose (BC) producing bacterium. Effects of five strains of G. xylinus on cellulose production and properties were investigated by using D-glu- cose as carbon source. The initial concentration of glucose was 40 g/L. X-ray diffraction analysis, scanning electron microscopy and universal material testing machine were used to characterize the bacterial cellulose. The volume yield of bacterial cellulose by the five strains of G. xylinus was as follows: DHU-ZCY-1 (3.9 g/L) > DHU-ATCC-1 (2.62 g/L) > DHU-ZGD-1 (2.34 g/L) > DHU-YQ-1 (1.72 g/L) > ATCC23770 (0.61 g/L). The highest volume yield was around 7 times higher than the lowest one. Tensile strength of bacterial cellulose of the five strains was as follows: DHU-ZGD-1 > DHU-ZCY-1 > DHU-YQ-1 > DHU-ATCC-1 > ATCC23770. The results showed that unremarkable morphological difference of bacterial cellulose was found among the five strains. And there was no obvious difference in water content and crystallinity of BC obtained by the five strains. The fiber diameters were in the range between 65 nm and 91 nm.
文章引用:张少瑞, 陈琳, 钟春燕, 洪枫. 木葡糖酸醋杆菌株型对细菌纤维素产量与性能的影响[J]. 生物过程, 2016, 6(1): 8-16. http://dx.doi.org/10.12677/BP.2016.61002

参考文献

[1] Bielecki, S., Krystynowicz, A., Turkiewicz, M., et al. (2002) Bacterial Cellulose. Biopolymers (Polysaccharides I: Po-lysaccharides from Prokaryotes) Wiley-VCH Verlag GmbH, Weinheim.
[2] 冯静, 施庆珊, 欧阳友生, 等. 葡糖醋杆菌的研究进展[J]. 化学与生物工程, 2009(5): 10-13.
[3] Wei, B., Yang, G. and Hong, F. (2011) Preparation and Evaluation of a Kind of Bacterial Cellulose Dry Films with Antibacterial Properties. Carbohydrate Polymers, 84, 533-538.
http://dx.doi.org/10.1016/j.carbpol.2010.12.017
[4] Tang, J., Bao, L., Li, X., et al. (2015) Potential of PVA-Doped Bacterial Nano-Cellulose Tubular Composites for Artificial Blood Vessels. Journal of Materials Chemistry B, 3, 8537-8547.
http://dx.doi.org/10.1039/C5TB01144B
[5] Lu, X., Tang, S., Huang, B., et al. (2013) Preparation and Characterization of Bacterial Cellulose/Hydroxypropyl Chitosan Blend As-Spun Fibers. Fibers and Polymers, 14, 935-940.
http://dx.doi.org/10.1007/s12221-013-0935-4
[6] Klemm, D., Heublein, B., Fink, H.P., et al. (2005) Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angewandte Chemie International Edition, 44, 3358-3393.
http://dx.doi.org/10.1002/anie.200460587
[7] Jiang, G., Zhang, J., Qiao, J., et al. (2015) Bacterial Nanocellulose/Nafion Composite Membranes for Low Temperature Polymer Electrolyte Fuel Cells. Journal of Power Sources, 273, 697-706.
http://dx.doi.org/10.1016/j.jpowsour.2014.09.145
[8] Segal, L., Creely, J.J., Martin, A.E., et al. (1959) An Em-pirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Re-search Journal, 29, 786-794.
http://dx.doi.org/10.1177/004051755902901003
[9] 张硕, 杜倩雯, 兰水, 等 七种糖类对木醋杆菌和红茶菌的影响[J]. 纤维素科学与技术, 2014, 22(4): 18-27.
[10] De Wulf, P., Joris, K. and Vandamme, E.J. (1996) Improved Cellulose Formation by an Acetobacter xylinum Mutant Limited in (Keto)gluconate Synthesis. Journal of Chemical Technology & Biotechnology, 67, 376-380.
http://dx.doi.org/10.1002/(SICI)1097-4660(199612)67:4<376::AID-JCTB569>3.0.CO;2-J
[11] Yang, Y.K., Park, S.H., Hwang, J.W., et al. (1998) Cellulose Production by Acetobacter xylinum BRC5 under Agitated Condition. Journal of Fermentation and Bioengineering, 85, 312-317.
http://dx.doi.org/10.1016/S0922-338X(97)85681-4
[12] Hu, W., Chen, S., Yang, J., et al. (2014) Functionalized Bacterial Cellulose Derivatives and Nanocomposites. Carbohydrate Polymers, 101, 1043-1060.
http://dx.doi.org/10.1016/j.carbpol.2013.09.102
[13] Fu, L., Zhang, J. and Yang, G. (2013) Present Status and Applications of Bacterial Cellulose-Based Materials for Skin Tissue Repair. Carbohydrate Polymers, 92, 1432-1442.
http://dx.doi.org/10.1016/j.carbpol.2012.10.071
[14] Rambo, C.R., Recouvreux, D.O.S., Carminatti, C.A., et al. (2008) Template Assisted Synthesis of Porous Nanofibrous Cellulose Membranes for Tissue Engineering. Materials Science and Engineering: C, 28, 549-554.
http://dx.doi.org/10.1016/j.msec.2007.11.011