富营养化水体中水位对沉水植物的影响研究进展
Effects of Water Level on Submerged Macrophytes in Eutrophic Water: Research Progress
DOI: 10.12677/OJFR.2016.31001, PDF, HTML, XML, 下载: 2,184  浏览: 8,470  科研立项经费支持
作者: 魏 华*, 郝汉舟, 钟学斌:湖北科技学院资源环境科学与工程学院,长江中游水土资源研究中心,湖北 咸宁
关键词: 富营养化水体水位沉水植物Eutrophic Water Water Level Submerged Macrophytes
摘要: 水体富营养化所带来的连锁效应导致了沉水植物的大规模衰退和植被群落的逆行演替,由于沉水植物对淡水湖泊的生态系统具有构建作用,沉水植物的消亡将直接加剧水体环境的恶化,产生严重的水生态危机。水位是影响沉水植物生长最重要的生态因子之一。本文主要总结了富营养化水体中水位对沉水植物的研究进展,以及基于近年来囯内外沉水植物的恢复与重建的实践成果,分析水位调控恢复沉水植物的可行性,为沉水植物修复实践工程提供理论依据。
Abstract: Ripple effect brought by the eutrophication caused the massive recession and retrogressive suc-cession of the submerged vegetation community. Since submerged plant play a major role in the freshwater lake ecological system, the death of submerged plant will directly aggravate the dete-rioration of water environment and cause serious ecological crisis. The restoration of submerged macrophytes is the key to remediate eutrophic water and maintain the health of aquatic ecosystem, while water level is the main limiting factor. This paper mainly summarizes the research in the effect of water level on the submerged plant in the eutrophic waters, and analysis the feasibility of water level control to restore the submerged plant based on the result of the restoration and reconstruction of the submerged plant practice in recent years at home and abroad, and provides the theory basis for practice project of polluted water remediation by submerged macrophytes.
文章引用:魏华, 郝汉舟, 钟学斌. 富营养化水体中水位对沉水植物的影响研究进展[J]. 水产研究, 2016, 3(1): 1-9. http://dx.doi.org/10.12677/OJFR.2016.31001

参考文献

[1] 国家环境保护部. 2014年中国环境状况公报RI1[Z]. 环境保护. 2014.
[2] 邹丽莎, 聂泽宇, 姚笑颜, 施积炎. 富营养化水体中光照对沉水植物的影响研究进展, 2013, 24(7): 2073-2080.
[3] White, S.D. and Ganf, G.G. (2002) A Comparison of the Morphology, Gas Space Anatomy and Potential for Internal Aeration in Phragmitesaustralis under Variable and Static Water Regimes. Aquatic Botany, 73, 115-127.
http://dx.doi.org/10.1016/S0304-3770(02)00010-4
[4] Coops, H., Beklioglu, M. and Crisman, T.L. (2003) The Role of Water-Level Fluctuations in Shallow Lake Ecosystems-Workshop Conclusions. Hydrobiologia, 506, 23-27.
http://dx.doi.org/10.1023/B:HYDR.0000008595.14393.77
[5] White, M.S., Xenopoulos, M.A. and Hogsden, K. (2008) Natural Lake Level Fluctuation and Associated Concordance with Water Quality and Aquatic Communities within Small Lakes of the Laurentian Great Lakes Region. Hydrobiologia, 613, 21-31.
http://dx.doi.org/10.1007/s10750-008-9469-y
[6] Tharme, R.E. (2003) A Global Perspective on Environmental Flow Assessment: Emerging Trends in the Development and Application of Environmental Flow Methodologies for Rivers. River Research and Applications, 19, 397-441.
http://dx.doi.org/10.1002/rra.736
[7] Aroviita, J. and Hämäläinen, H. (2008) The Impact of Water-Level Regu-lation on Littoral Macroinvertebrate Assemblages in Boreal Lakes. Hydrobiologia, 613, 45-56.
http://dx.doi.org/10.1007/s10750-008-9471-4
[8] Hammersmark, C.T., Rains, M.C., Wickland, A.C. and Mount, J.F. (2009) Vegetation and Water-Table Relationships in a Hydrologically Restored Riparian Meadow. Wetlands, 29, 785-797.
http://dx.doi.org/10.1672/08-15.1
[9] Raulings, E.J., Morris, K., Roache, M.C. and Boon, P.I. (2010) The Importance of Water Regime Operating at Small Spatial Scales for the Diversity and Structure of Wetland Vegetation. Freshwater Biology, 55, 701-715.
http://dx.doi.org/10.1111/j.1365-2427.2009.02311.x
[10] Van Geest, G.J., Coops, H., Scheffer, M. and van Nes, E.H. (2007) Long Transients Near the Ghost of a Stable State in Eutrophic Shallow Lakes with Fluctuating Water Levels. Ecosystems, 10, 36-46.
http://dx.doi.org/10.1007/s10021-006-9000-0
[11] 刘永, 郭怀成, 周丰, 王真, 黄凯. 湖泊水位变动对水生植被的影响机理及其调控方法[J]. 生态学报, 2006, 26(9): 3117-3126.
[12] Gafhy, S. and Gasith, A. (1999) Spatially and Temporally Sporadic Appearance of Macrophytes in the Littoral Zone of Lake Kinneret, Israel: Taking Advantage of a Window of Opportunity. Aquatic Botany, 62, 249-267.
http://dx.doi.org/10.1016/S0304-3770(98)00097-7
[13] 潘国权. 水下光质对范草和苦草生长的影响[D]: [硕士学位论文]. 南京: 南京师范大学, 2008.
[14] Ni, L.Y. (2001) Growth of Potamageton maackianus under Low-Light Stress in Eutrophic Water. Journal of Freshwater Ecology, 16, 249-256.
http://dx.doi.org/10.1080/02705060.2001.9663809
[15] Sand-Jensen, K. and Borum, J. (1984) Epiphyte Shading and Its Effect on Photosynthesis and Diel Metabolism of Lobelia dortmanna L. during the Spring Bloom in a Danish Lake. Aquatic Botany, 20, 109-119.
http://dx.doi.org/10.1016/0304-3770(84)90031-7
[16] Twilley, R.R., Kemp, W.M. and Staver, K.W. (1985) Nu-trient Enrichment of Estuarine Submersed Vascular Plant Communities. 1. Algal Growth and Effects on Production of Plants and Associated Communities. Marine Ecology, 23, 179-191.
http://dx.doi.org/10.3354/meps023179
[17] Barko, J.W., Gunnison, D. and Carpenter, S.R. (1991) Sediment In-teractions with Submersed Macorphyte Growth and Community Dynamics. Aquatic Botany, 41, 41-65.
http://dx.doi.org/10.1016/0304-3770(91)90038-7
[18] Xiao, C., Wang, X., Xia, J., et al. (2010) The Effect of Temperature, Water Level and Burial Depth on Seed Germination of Myriophyllum spicatum and Potamogeton ma-laianus. Aquatic Botany, 92, 28-32.
http://dx.doi.org/10.1016/j.aquabot.2009.09.004
[19] Wilcox, D.A., Meeker, J.E., Hudson, P.L., et al. (2002) Hydrologic Variability and the Application of Index of Biotic Integrity Metrics to Wetlands: A Great Lakes Evaluation. Wetlands, 22, 588-615.
http://dx.doi.org/10.1672/0277-5212(2002)022[0588:HVATAO]2.0.CO;2
[20] Barrat-Segretain, M.H., Henry, C.P. and Bornette, G. (1999) Regeneration and Colonization of Aquatic Plant Fragments in Relation to the Disturbance Frequency of Their Habitats. Archiv für Hydrobiologie, 145, 111-127.
[21] Nishihiro, J., Kawaguchi, H., Iijima, H., et al. (2001) Conservation Ecological Study of Nymphoide speltata in Lake Kasumigaura. Ecology and Civil Engineering, 4, 39-48. (In Japanese with English Abstract)
http://dx.doi.org/10.3825/ece.4.39
[22] Baskin, C.C. and Baskin, J.M. (1998) Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. Academic Press, San Diego, 666 p.
[23] Scheffer, M. (1998) Ecology of Shallow Lakes. Chapman and Hall, London, 357 p.
[24] Santos, A.M. and Esteves, F.A. (2004) Influence of Water Level Fluctuation on the Mortality and Aboveground Biomass of the Aquatic Macrophyte Eleocharis interstincta (VAHL) Roemer et Schults. Brazilian Archives of Biology and Technology, 47, 1678-4324.
http://dx.doi.org/10.1590/S1516-89132004000200016
[25] Bornette, G. and Puijalon, S. (2011) Response of Aquatic Plants to Abiotic Factors: A Review. Aquatic Sciences, 73, 1- 14.
http://dx.doi.org/10.1007/s00027-010-0162-7
[26] Zhang, X.K., Liu, X.Q. and Wang, H.Z. (2014) Developing Water Level Regulation Strategies for Macrophytes Restoration of a Large River-Disconnected Lake, China. Ecological Engineering, 68, 25-31.
http://dx.doi.org/10.1016/j.ecoleng.2014.03.087
[27] 曹萃禾. 水生维管束植物在太湖生态系统中的作用[J]. 生态学杂志, 1987, 6(1): 37-39.
[28] Li, X.N., Song, H.L., Li, W., et al. (2010) An Integrated Ecological Floating-Bed Employing Plant, Freshwater Clam and Biofilm Carrier for Purification of Eutrophic Water. Ecological Engineering, 36, 382-390.
http://dx.doi.org/10.1016/j.ecoleng.2009.11.004
[29] Pokonry, J., Kvet, J. and Ondok, J.P. (1990) Function of the Plant Component in Densely Stocked Fish Ponds. Bulletin of Ecology, 21, 44-48.
[30] Paillisson, J.M. and Marion, L. (2006) Can Small Water Level Fluctuations Affect the Biomass of Nymphaea alba in Large Lakes? Aquatic Botany, 84, 259-266.
http://dx.doi.org/10.1016/j.aquabot.2005.10.004
[31] 符辉, 袁桂香, 曹特, 等. 洱海近50a来沉水植被演替及其主要驱动要素[J]. 湖泊科学, 2013, 25(6): 854-861.
[32] Gafhy, S. and Gasith, A. (1999) Spatially and Temporally Sporadic Appearance of Macrophytes in the Littoral Zone of Lake Kinneret, Israel: Taking Advantage of a Window of Opportunity. Aquatic Botany, 62, 249-267.
http://dx.doi.org/10.1016/S0304-3770(98)00097-7
[33] Chambers, P.A. and Kalff, J. (1985) The Influence of Se-diment Composition and Irradiance on the Growth and Morphology of Myriophyllum spicatum. Aquatic Botany, 22, 253-263.
http://dx.doi.org/10.1016/0304-3770(85)90003-8
[34] Titus, J.E. and Adams, M.S. (1979) Comparative Carbohydrate Storage and Utilization Patterns in the Submersed Macrophytes Myriophyllum spicatum and Vallisneria americana. American Midland Naturalist, 102, 263-272.
[35] Strand, J.A. and Weisner, S.E.B. (2001) Morphological Plastic Responses to Water Depth and Wave Exposure in an Aquatic Plant (Myriophyllum spicatum). Journal of Ecology, 89, 166-175.
[36] 陈忠义, 雷泽湘, 周进. 梁子湖6 种沉水植物种群数量和生物量周年动态[J]. 水生生物学报, 2000, 24(6): 582- 588.
[37] 杨永清. 水位波动对水生植物生长影响的实验生态学研究[D]: [硕士学位论文]. 武汉: 武汉大学, 2003.
[38] 杨永清, 于丹, 耿显华, 等. 梁子湖苦草繁殖体的分布及其萌发初步研究[J]. 水生生物学报, 2004, 28(4): 396- 401.
[39] Havens, K.E. (2003) Submerged Aquatic Vegetation Correlations with Depth and Light Attenuating Materials in a Shallow Subtropical Lake. Hydrobiologia, 493, 173-186.
http://dx.doi.org/10.1023/A:1025497621547
[40] Spence, D.H.N. and Chrystal, J. (1970) Photosynthesis and Zonation of Freshwater Macrophytes II. Adaptability of Species of Deep and Shallow Water. New Phytologist, 69, 217-227.
http://dx.doi.org/10.1111/j.1469-8137.1970.tb04065.x
[41] Titus, J.E. and Adams, M.S. (1979) Coexistence and the Comparative Light Relations of the Submersed Macrophytes Myriophyllum spicatum L. and Vallisneria americana Michx. Oecologia, 40, 273-286.
http://dx.doi.org/10.1007/BF00345324
[42] Maberly, S.C. (1993) Morphological and Photosynthetic Characteris-tics of Potamogeton obtusifolius from Different Depths. Journal of Aquatic Plant Management, 31, 34-39.
[43] 何伟, 王国祥, 杨文斌, 等. 水深梯度对菹草生长的影响[J]. 生态学杂志, 2009, 28(7): 1224-1228.
[44] 李威, 何亮, 朱天顺, 曹特, 张霄林, 倪乐意. 洱海苦草(Vallisneria natans)水深分布和叶片C、N、P化学计量学对不同水深的响应[J]. 湖泊科学, 2014, 26(4): 585-592.
[45] 刘伟龙, 胡维平, 翟水晶, 等. 水深对马来眼子菜生长及氮磷去除效果的影响[J]. 南京林业大学学报: 自然科学版, 2008, 32(4): 11-16.
[46] 陈正勇, 王国祥, 吴晓东, 等. 不同水深条件下菹草(Potamogeton crispus)的适应对策[J]. 湖泊科学, 2011, 23(6): 942-948.
[47] 靳宝锋, 郭友好. 微齿眼子菜繁殖生物学特性的初步研究[J]. 水生生物学报, 2001, 25(5): 439-448.
[48] 袁龙义, 李守淳, 李伟, 邓光, 张昭. 水深对刺苦草生长和繁殖策略的影响研究[J]. 江西师范大学学报(自然科学版), 2007, 31(3): 156-160.
[49] Miller, J., Haller, W.T. and Garrard, L.A. (1976) Some Characteristics of Hydrilla Tubers Taken from Lake Ocklawaha during Draw Down. Journal of Aquatic Plant Management, 14, 29-31.
[50] Miller, J.D., Haller, W.T. and Glenn, M.S. (1993) Turion Production by Dioecious Hydrilla in North Florida. Journal of Aquatic Plant Manage-ment, 31, 101-105.
[51] Mitra, E. (1964) Contributions to Our Knowledge of Indian Freshwater Plants 4 on Some As-pects of the Morphological and Anatomical Studies of Turions of Hydrilla verticillata (Linn. f.) Royle. Journal of the Asiatic Society, 6, 17- 27.
[52] 崔心红, 蒲云海, 熊秉红, 李伟, 陈家宽. 水深梯度对竹叶眼子菜生长和繁殖的影响[J]. 水生生物学报, 1999, 23(3): 269-272.
[53] 翟水晶, 胡维平, 邓建才, 陈桥, 韩红娟, 刘伟龙. 不同水深和底质对太湖马来眼子菜(Potamogeton malaianus)生长的影响[J]. 生态学报, 2008, 28(7): 3035-3041.
[54] Doyle, R.D. (2001) Effects of Waves on the Early Growth of Vallisneria americana. Freshwater Biology, 46, 389-397.
http://dx.doi.org/10.1046/j.1365-2427.2001.00668.x
[55] Havens, K.E. (2003) Submerged Aquatic Vegetation Correlations with Depth and Light Attenuating Materials in a Shallow Subtropical Lake. Hydrobiologia, 493, 173-186.
http://dx.doi.org/10.1023/A:1025497621547
[56] Korswagen, H.C., Park, J.H., Ohshima, Y., et al. (1997) An Activating Mutation in a Caenorhabditis elegans G(s) Protein Induces Neural Degeneration. Genes and Development, 11, 1493-1503.
http://dx.doi.org/10.1101/gad.11.12.1493
[57] Engel, S. and Nichols, S.A. (1994) Aquatic Macrophyte Growth in a Turbid Windswept Lake. Journal of Freshwater Ecology, 9, 97-109.
http://dx.doi.org/10.1080/02705060.1994.9664436
[58] Scheffer, M. (1997) Ecology of Shallow Lakes. Oecologia, 109, 592-599.
[59] Gafhy, S. and Gasith, A. (1999) Spatially and Temporally Sporadic Appearance of Macrophytes in the Littoral Zone of Lake Kinneret, Israel: Taking Advantage of a Window of Opportunity. Aquatic Botany, 62, 249-267.
http://dx.doi.org/10.1016/S0304-3770(98)00097-7
[60] Chambers, P.A. and Prepas, E.E. (1988) Underwater Spectral Attenuation and Its Effect on the Maximum Depth of Angiosperm Colonization. Canadian Journal of Fisheries and Aquatic Sciences, 45, 1010-1017.
http://dx.doi.org/10.1139/f88-124
[61] 符辉, 袁桂香, 曹特, 等. 洱海近50a来沉水植被演替及其主要驱动要素[J]. 湖泊科学, 2013, 25(6): 854-861.
[62] Hudon, C., Gagnon, P., Amyot, J.P., et al. (2005) Historical Changes in Herbaceous Wetland Distribution Induced by Hydrological Conditions in Lake Saint Pierre (St. Lawrence River, Quebec, Canada). Hydrobiologia, 539, 205-234.
http://dx.doi.org/10.1007/s10750-004-4872-5
[63] Havens, K.E., Sharfstein, B., Brady, M.A., et al. (2004) Recovery of Submerged Plants from High Water Stress in a Large Subtropical Lake in Florida, USA. Aquatic Botany, 78, 67-82.
http://dx.doi.org/10.1016/j.aquabot.2003.09.005
[64] Bickel, T.O. and Schooler, S.S. (2015) Effect of Water Quality and Season on the Population Dynamics of Cabomba caroliniana in Subtropical Queensland, Australia. Aquatic Botany, 123, 64-71.
http://dx.doi.org/10.1016/j.aquabot.2015.02.003
[65] Dai, Y., Jia, C., Liang, W., Hu, S. and Wu, Z. (2012) Effects of the Submerged Macrophyte Ceratophyllum demersum L. on Restoration of a Eutrophic Water Body and Its Optimal Coverage. Ecological Engineering, 40, 113-116.
http://dx.doi.org/10.1016/j.ecoleng.2011.12.023
[66] Hestand, R.S., May, B.E., Schultz, D.P. and Walker, C.R. (1973) Ecological Implications of Water Levels on Plant Growth in a Shallow Water Reservoir. Hyacinth Control Journal, 11, 54-58.
[67] 李文朝. 富营养水体中常绿水生植被组建及净化效果研究[J]. 中国环境科学, 1997, 17(1): 53-57.
[68] 李敦海, 杨劭, 方涛, 等. 水位调控法恢复富营养化水体沉水植物技术研究——以无锡五里湖为例[J]. 环境科学与技术, 2008, 31(12): 59-62.
[69] 刘学勤, 邢伟, 张晓可. 巢湖水向湖滨带生态修复工程实践[J]. 长江流域资源与环境, 2012, 21(S2): 51-55.