基于有限元分析的组织光热耦合相互作用模型
Tissue Photothermal Coupling Interaction Model Based on Finite Element Analysis
DOI: 10.12677/OE.2016.61001, PDF, HTML, XML, 下载: 2,246  浏览: 6,444  国家自然科学基金支持
作者: 彭媛媛, 吴淑莲, 李志芳, 李 晖:福建师范大学光电与信息工程学院,医学光电科学与技术教育部重点实验室,福建 福州
关键词: 光分布温度分布光热参数光热耦合场Light Distribution Temperature Distribution Photothermal Parameters Photothermal Coupling Field
摘要: 本文基于有限元分析方法,使用COMSOL Multiphysics 4.4软件,将生物组织光传输的物理场与热传输的物理场相耦合,运用间接耦合求解法和全耦合求解法分别模拟了静态光热参数和动态光热参数下生物组织的光分布和温度分布随时间的变化特征;并将静态光热参数和动态光热参数的情况相比较。结果表明:通过分析不同温度的静态光热参数下的光分布和温度分布能定性说明组织光分布和温度分布的变化趋势;使用动态光热参数进行模拟时,随着加热时间的增加,光分布范围和温度分布范围在逐渐变大,入射点的光通量密度和温度在增大,而温度随加热时间的增长变化的越来越慢。同时还表明COMSOL Multiphysics软件能够方便的求出任意时刻的温度分布及此时所对应的光分布。
Abstract: This paper is based on the finite element analysis method and it couples the physical field of optical transmission with the physical field of heat transfer in biological tissue by using COMSOL Multiphysics 4.4 software. The temporal distributions of light and temperature in biological tissue were studied in the case of statically photothermal parameters and dynamically photothermal parameters by using indirectly coupled solution method and fully coupled solution method, respectively. In addition, the case of statically photothermal parameters was compared with the case of dynamically photothermal parameters. The results present that the change of light distribution and change rate of temperature in tissue can be described qualitatively by analyzing the distribution of light and temperature in the case of statically photothermal parameters of different temperature; the range of light distribution and temperature distribution are increased in the course of heating when the dynamically photothermal parameters were employed. At the same time, the light flux density and temperature of the incident point will be increased, but the change rate of temperature will be decreased when the heating time goes by. It also shows that the temperature profile at any time and the corresponding light distribution can be easily obtained by using COMSOL Multiphysics software.
文章引用:彭媛媛, 吴淑莲, 李志芳, 李晖. 基于有限元分析的组织光热耦合相互作用模型[J]. 光电子, 2016, 6(1): 1-9. http://dx.doi.org/10.12677/OE.2016.61001

参考文献

[1] Jaywant, S.M., Wilson, B.C., Patterson, M.S., Lilge, L.D., Flotte, T.J., Woolsey, J. and McCulloch, C. (1993) Temperature Dependent Changes in the Optical Absorption and Scattering Spectra of Tissues: Correlation with Ultrastructure. Proceedings of the SPIE, 1882, 218-229.
[2] 李小霞. 激光照射下生物组织热效应的数值分析与实验研究[D]. 天津: 天津大学, 2004.
[3] 江世臣, 张学学. 表面照射下激光与生物组织的光热作用分析[J]. 光电子: 激光, 2005, 16(6): 752-756.
[4] 童雅星, 黄梅珍, 丁海峰. 动态光热参数情形下激光牛肌肉组织光热响应模拟[J]. 上海交通大学报, 2010, 44(8): 1114-1119.
[5] Shurrab, K.M. and Sayem, E.M. (2014) Simulation and Study of Temperature Distribution in Living Biological Tissues under Laser Irradiation. Journal of Lasers in Medical Sciences, 5, 135-139.
[6] Manuchehrabadi, N., Chen, Y.H., Lebrun, A., et al. (2013) Computational Simulation of Temperature Elevation in Tumors Using Monte Carlo and Comparison to Experimental Measurements in Laser Photothermal Therapy. Journal of Biomechanical Engineering, 135, 1087-1087. http://dx.doi.org/10.1115/1.4025388
[7] 单宁, 战仁军, 程东方. 不同形状连续激光辐照皮肤组织温度场数值模拟[J]. 激光杂志, 2014, 35(7): 74-76.
[8] 单宁, 战仁军, 夏烈祥. 不同方式激光辐照下生物组织瞬态温度场分布研究[J]. 激光杂志, 2013, 34(4): 16-17.
[9] 谢树森, 杨洪钦, 李步洪. 激光与皮肤层状组织的光热作用及其传热模型[J]. 光电子: 激光, 2001, 12(7): 746-750.
[10] 李小霞, 范世福, 赵友全, 等. 光动力学疗法中光热效应的有限元法[J]. 光电子: 激光, 2004, 15(7): 881-884.
[11] Müller, G. and Roggan, A. (1995) Laser Induced Interstitial Thermotherapy. Bellingham: SPIE Optical Engineering Press, 83-189.
[12] 李晖. 生物组织光学模型: 原理、测量技术及其应用[D]. 杭州: 浙江大学, 2000.
[13] 徐可欣, 高峰, 赵会娟. 生物医学光子学[M]. 北京: 科学出版社, 2011: 51-74.