基于遗传BP神经网络的飞机驾驶舱人机功能分配方法
Man-Machine Function Allocation for Cockpit Based on Genetic BP Neural Network
DOI: 10.12677/JAST.2016.41001, PDF, HTML, XML,  被引量 下载: 2,229  浏览: 5,729  国家自然科学基金支持
作者: 张 安, 毕文豪, 汤传乐:西北工业大学,陕西 西安
关键词: 飞机驾驶舱人机功能分配BP神经网络遗传算法Cockpit Man-Machine Function Allocation BP Neural Network Genetic Algorithm
摘要: 飞机驾驶舱系统自动化水平提高的关键在于科学合理地进行人机功能分配。为了提高飞机驾驶舱人机功能分配的可靠性,本文通过对遗传算法和BP神经网络这两种智能算法进行分析研究,提出了基于遗传BP神经网络的飞机驾驶舱人机功能分配方法。将机组成员飞行时的生理指标HRV2和TLI2作为网络的输入变量,使用遗传算法优化BP神经网络权值和阀值,输出飞行任务自动化等级,进而得到相应的人机功能分配方案。仿真结果表明,相比于传统的BP神经网络,该方法确定的人机功能分配方案可靠性更高。
Abstract: The key to improve the automation level of the aircraft cockpit system is getting on man-machine function allocation scientifically and reasonably. In order to improve the reliability of man-machine function allocation for cockpit, based on the study of genetic algorithm and BP neural network, we propose a method of using genetic BP neural network in this paper. The input variables of the network are HRV2 and TLI2 which are the physiological indexes of the crew. Geneticalgorithm was used to optimize the weights and bias of BP neural network. The output variable of the network is the levels of automation. In this way, we can get corresponding man-machine function allocation scheme. Compared with the traditional BP neural network, the simulation result shows that this method is more reliable for the man-machine function allocation.
文章引用:张安, 毕文豪, 汤传乐. 基于遗传BP神经网络的飞机驾驶舱人机功能分配方法[J]. 国际航空航天科学, 2016, 4(1): 1-8. http://dx.doi.org/10.12677/JAST.2016.41001

参考文献

[1] 冯华南. 飞行员与驾驶舱自动化[J]. 国际航空, 2006(1): 68-70.
[2] Kaber, D.B., Wright, M.C. and Clamann, M.P. (2005) Adaptive Automation of Human-Machine System Information- Processing Functions. Human Factors, 47, 730-741.
http://dx.doi.org/10.1518/001872005775570989
[3] Wilson, G.F. and Russell, C.A. (2007) Performance Enhancement in an Uninhabited Air Vehicle Task Using Psychophysiologically Determined Adaptive Aiding. Human Factors, 49, 1005-1018.
http://dx.doi.org/10.1518/001872007X249875
[4] Zhang, A. and Tang, Z. (2011) Man-Machine Function Allocation Based on Uncertain Linguistic Multiple Attribute Decision Making. Chinese Journal of Aeronautics, 24, 816-822.
http://dx.doi.org/10.1016/S1000-9361(11)60096-4
[5] 易华辉, 宋笔锋, 姬东朝. 场景的无人机控制站人机功能分配[J]. 火力与指挥控制, 2007, 32(12): 129-132.
[6] 柳平, 胡孟权, 胡文东, 等. 作战飞机人机功能分配方法[J]. 火力与指挥控制, 2012, 37(12): 19-22.
[7] Nassef, A., Mahfouf, M., Linkens, D.A., et al. (2010) The Assessment of Heart Rate Variability (HRV) and Task Load Index (TLI) as Physiological Markers for Physical Stress. Springer Berlin Heidelberg, 146-149.
[8] 刘华, 张建华, 王娆芬, 等. 人机系统操作员功能状态的模糊聚类方法[C]. 北京: 第29届中国控制会议, 2010.
[9] Parasuraman, R., Sheridan, T.B. and Wickens, C.D. (2000) A Model for Types and Levels of Human Interaction with Automation. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 30, 286-297.
http://dx.doi.org/10.1109/3468.844354
[10] 周品. MATLAB神经网络设计与应用[M]. 北京: 清华大学出版社, 2013.
[11] 王德明, 王莉, 张广明. 基于遗传BP神经网络的短期风速预测模型[J]. 浙江大学学报(工学版), 2012, 46(5): 837-841.
[12] 欧阳玉梅, 马志强, 方若森. 基于MATLAB的遗传神经网络的设计与实现[J]. 信息技术, 2008(6): 73-76.