药物依赖神经机制研究综述
The Research Reviews of Drug Addicts’ Neural Mechanisms
DOI: 10.12677/AP.2016.63033, PDF, HTML, XML, 下载: 2,027  浏览: 5,721 
作者: 王永明, 邹枝玲:西南大学心理学部,重庆
关键词: 药物成瘾大脑结构功能磁共振成像Drug Addiction Cerebral Structure Functional Magnetic Resonance Imaging
摘要: 长期药物成瘾会导致大脑结构和功能的损害。近年来运用基于体素的形态测量学和功能磁共振成像技术考察脑部改变的研究日益增多,本文总结了针对药物成瘾者的脑结构和功能改变的以往成果,探索性提出成瘾神经机制研究的发展前景。
Abstract: Long term drug addiction should lead to cerebral structure and function’s injury. The voxel-based morphometry and functional magnetic resonance imaging technique were employed to investigate brain’s variation ever-increasingly in these years. We summarized research results concerning drug addicts’ cerebral structural and functional difference and proposed addictive neural mechanism’s development potential exploringly in this study.
文章引用:王永明, 邹枝玲 (2016). 药物依赖神经机制研究综述. 心理学进展, 6(3), 255-263. http://dx.doi.org/10.12677/AP.2016.63033

参考文献

[1] Bechara, A. (2005). Decision Making, Impulse Control and Loss of Willpower to Resist Drugs: A Neurocognitive Perspective. Nature Neuroscience, 8, 1458-1463.
http://dx.doi.org/10.1038/nn1584
[2] Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (2005). The Iowa Gambling Task and the Somatic Marker Hypothesis: Some Questions and Answers. Trends in Cognitive Sciences, 9, 159-162.
http://dx.doi.org/10.1016/j.tics.2005.02.002
[3] Bolla, K. I., Eldreth, D. A., London, E. D., Kiehl, K. A., Mouratidis, M., Contoreggi, C., Matochik, J. A., Kurian, V., Cadet, J. L., Kimes, A. S. et al. (2003). Orbitofrontal Cortex Dysfunction in Abstinent Cocaine Abusers Performing a Decision-Making Task. Neuroimage, 19, 1085-1094.
http://dx.doi.org/10.1016/S1053-8119(03)00113-7
[4] Chase, H. W., Eickhoff, S. B., Laird, A. R., & Hogarth, L. (2011). The Neural Basis of Drug Stimulus Processing and Craving: An Activation Likelihood Estimation Meta-Analysis. Biological Psychiatry, 70, 785-793.
http://dx.doi.org/10.1016/j.biopsych.2011.05.025
[5] Dagher, A., & Robbins, T. W. (2009). Personality, Addiction, Dopamine: Insights from Parkinson’s Disease. Neuron, 61, 502-510.
http://dx.doi.org/10.1016/j.neuron.2009.01.031
[6] de Wit, H. (2009). Impulsivity as a Determinant and Consequence of Drug Use: A Review of Underlying Processes. Addiction Biology, 14, 22-31.
http://dx.doi.org/10.1111/j.1369-1600.2008.00129.x
[7] Elton, A., Young, J., Smitherman, S., Gross, R. E., Mletzko, T., & Kilts, C. D. (2014). Neural Network Activation during a Stop-Signal Task Discriminates Cocaine-Dependent from Non-Drug-Abusing Men. Addiction Biology, 19, 427-438.
http://dx.doi.org/10.1111/adb.12011
[8] Ersche, K. D., Barnes, A., Jones, P. S., Morein-Zamir, S., Robbins, T. W., & Bullmore, E. T. (2011). Abnormal Structure of Frontostriatal Brain Systems Is Associated with Aspects of Impulsivity and Compulsivity in Cocaine Dependence. Brain, 134, 2013-2024.
http://dx.doi.org/10.1093/brain/awr138
[9] Frank, M. J. (2005). Dynamic Dopamine Modulation in the Basal Ganglia: A Neurocomputational Account of Cognitive Deficits in Medicated and Nonmedicated Parkinsonism. Journal of Cognitive Neuroscience, 17, 51-72.
http://dx.doi.org/10.1162/0898929052880093
[10] Goldstein, R. Z., Tomasi, D., Rajaram, S., Cottone, L. A., Zhang, L., Maloney, T. E., Telang, F., Alia-Klein, N., & Volkow, N. D. (2007). Role of the Anterior Cingulate and Medial Orbi-tofrontal Cortex in Processing Drug Cues in Cocaine Addiction. Neuroscience, 144, 1153-1159.
http://dx.doi.org/10.1016/j.neuroscience.2006.11.024
[11] Goudriaan, A. E., Oosterlaan, J., De Beurs, E., & Van Den Brink, W. (2006). Neurocognitive Functions in Pathological Gambling: A Comparison with Alcohol Dependence, Tourette Syndrome and Normal Controls. Addiction, 101, 534-547.
http://dx.doi.org/10.1111/j.1360-0443.2006.01380.x
[12] Hanlon, C. A., & Canterberry, M. (2012). The Use of Brain Imaging to Elucidate Neural Circuit Changes in Cocaine Addiction. Substance Abuse and Rehabilitation, 3, 115-128.
http://dx.doi.org/10.2147/SAR.S35153
[13] Kable, J. W., & Glimcher, P. W. (2007). The Neural Correlates of Sub-jective Value during Intertemporal Choice. Nature Neuroscience, 10, 1625-1633.
http://dx.doi.org/10.1038/nn2007
[14] Liu, J., Liang, J., Qin, W., Tian, J., Yuan, K., Bai, L., Zhang, Y., Wang, W., Wang, Y., & Li, Q. (2009). Dysfunctional Connectivity Patterns in Chronic Heroin Users: An fMRI Study. Neuroscience Letters, 460, 72-77.
http://dx.doi.org/10.1016/j.neulet.2009.05.038
[15] Lucantonio, F., Stalnaker, T. A., Shaham, Y., Niv, Y., & Schoenbaum, G. (2012). The Impact of Orbitofrontal Dysfunction on Cocaine Addiction. Nature Neuroscience, 15, 358-366.
http://dx.doi.org/10.1038/nn.3014
[16] McRobbie, H., & West, O. (2013). Measuring Craving for Cigarettes: Should We Measure More than Just Craving? Addiction, 108, 1028-1030.
http://dx.doi.org/10.1111/add.12048
[17] Moeller, F. G., Dougherty, D. M., Barratt, E. S., Schmitz, J. M., Swann, A. C., & Grabowski, J. (2001). The Impact of Impulsivity on Cocaine Use and Retention in Treatment. Journal of Substance Abuse Treatment, 21, 193-198.
http://dx.doi.org/10.1016/S0740-5472(01)00202-1
[18] Naqvi, N. H., & Bechara, A. (2009). The Hidden Island of Addiction: The Insula. Trends in Neurosciences, 32, 56-67.
http://dx.doi.org/10.1016/j.tins.2008.09.009
[19] Pontieri, F., Tanda, G., & Di Chiara, G. (1995). Intravenous Cocaine, Morphine, and Amphetamine Preferentially Increase Extracellular Dopamine in the “Shell” as Compared with the “Core” of the Rat Nucleus Accumbens. Proceedings of the National Academy of Sciences, 92, 12304-12308.
http://dx.doi.org/10.1073/pnas.92.26.12304
[20] Schultz, W., Dayan, P., & Montague, P. R. (1997). A Neural Sub-strate of Prediction and Reward. Science, 275, 1593-1599.
[21] Sutherland, M. T., McHugh, M. J., Pariyadath, V., & Stein, E. A. (2012). Resting State Functional Connectivity in Addiction: Lessons Learned and a Road Ahead. Neuroimage, 62, 2281-2295.
http://dx.doi.org/10.1016/j.neuroimage.2012.01.117
[22] Wilson, S. J., Sayette, M. A., & Fiez, J. A. (2004). Prefrontal Responses to Drug Cues: A Neurocognitive Analysis. Nature Neuroscience, 7, 211-214.
http://dx.doi.org/10.1038/nn1200
[23] Yuan, K., Qin, W., Dong, M., Liu, J., Liu, P., Zhang, Y., Sun, J., Wang, W., Wang, Y., & Li, Q. (2010). Combining Spatial and Temporal Information to Explore Resting-State Networks Changes in Abstinent Heroin-Dependent Individuals. Neuroscience Letters, 475, 20-24.
http://dx.doi.org/10.1016/j.neulet.2010.03.033
[24] Yuan, K., Qin, W., Liu, J., Guo, Q., Dong, M., Sun, J., Zhang, Y., Liu, P., Wang, W., & Wang, Y. (2010). Altered Small- World Brain Functional Networks and Duration of Heroin Use in Male Abstinent Heroin-Dependent Individuals. Neuroscience Letters, 477, 37-42.
http://dx.doi.org/10.1016/j.neulet.2010.04.032