冷轧复相钢的研究开发进展
Latest Progress in Development of Cold-Rolled Complex Phase Steel
DOI: 10.12677/MEng.2016.31006, PDF, HTML, XML,  被引量 下载: 2,117  浏览: 6,532 
作者: 胡宽辉, 潘立波, 李立军:武汉钢铁集团公司研究院,湖北 武汉;田杰平:神龙汽车有限公司技术中心,湖北 武汉
关键词: 复相钢残余奥氏体先进高强度钢马氏体Complex Phase Steel Retained Austenite Advanced High Strength Steels Martensite
摘要: 先进高强度钢已经在汽车上得到了广泛应用,并在汽车的节能、安全、环保等方面表现出了广阔的前景。其与普通高强钢的区别在于它们的显微组织不同,普通高强钢是单相铁素体组织,而先进高强钢基本上是多相组织,主要强化方式为相变强化,其不仅具有高的强度,而且具有良好的成形性能、抗凹性能、能量吸收率高。本文简述了先进高强度复相钢的最新开发和研究进展情况,为复相钢的研究开发提供参考。
Abstract: Advanced high strength steels (AHSS) are widely used in body-in-white to improve safety, energy saving and reduce emission. Compared with common high strength steel, there are multi-phase microstructures for advanced high strength steels, but the common high strength steel is just a phase ferrite. It is improved strength through achieving hard phase during phase transformation. The advantages of advanced high strength steels are high strength, excellent formability, resisting depressed deformation and energy absorption. This paper describes the latest progress in devel-opment and research of advanced high strength steels to provide some reference for developing complex phase steel.
文章引用:胡宽辉, 潘立波, 李立军, 田杰平. 冷轧复相钢的研究开发进展[J]. 冶金工程, 2016, 3(1): 34-43. http://dx.doi.org/10.12677/MEng.2016.31006

参考文献

[1] 王利, 杨雄飞, 陆匠心. 汽车轻量化用高强度钢板的发展[J]. 钢铁, 2006, 41(9): 1-8.
[2] 黄晓艳, 刘波. 先进高强钢的显微组织与力学性能[J]. 云南冶金, 2008, 37(4): 43-47.
[3] 李光瀛, 周积智. 新一代高强塑性钢的开发与应用[J]. 轧钢, 2011, 28(1): 1-10.
[4] 王四根, 花礼先, 王绪. 硅锰系相变诱发塑性钢的热处理工艺研究[J]. 金属热处理, 1995(6): 14-17.
[5] Liu, J., Lu, H., Chen, J., et al. (2008) Simulation of Mechanical Behavior of Mul-tiphase TRIP Steel Taking Account of Transformation-Induced Plasticity. Computational Materials Science, 43, 646.
[6] Zackay, V.F., Parker, E.R., Fahr, D., et al. (1967) The Enhancement of Ductility on High-Strength Steel. Transactions of Applied Structures Mechanics, 60, 252-258.
[7] Hayami, S. and Tunikawa, T. (1975) Microalloying 75. Union Carbide Corp, New York, 311.
[8] Sakuma, Y., et al. (1995) Nippon Steel Technical Report, 64: 20.
[9] 张梅, 唐荻, 江海涛, 等. TRIP1000钢的连续退火工艺及组织性能[J]. 热加工工艺, 2009, 38(4): 128-133.
[10] 张增良, 宋仁伯, 程知松, 等. 连续退火工艺和合金元素对800MPa级冷轧双相钢组织性能的影响[J]. 热加工工艺, 2008, 37(6): 27-33.
[11] Lee, J., Lee, S.-J. and De Cooman, B.C. (2012) Effect of Micro-Alloying Elements on the Stretch-Flangeability of Dual PHASE STeel. Materials Science and Engineering A, 536, 231-238.
[12] 唐荻. 国外新型汽车用钢的技术要求及研究开发现状[J]. 钢铁, 2005, 40(6): 1-5.
[13] 冯太国, 亢占英. 连续退火工艺对冷轧热镀锌双相钢780DP性能的影响[J]. 宝钢技术, 2012(4): 11-14.
[14] Liu, H.C., Li, F., Shi, W., et al. (2012) Chal-lenges in Hot-Dip Galvanizing of High Strength Dual Phase Steel: Surface Selective Oxidation and Mechanical Property Degradation. Surface & Coatings Technology, 206, 3428-3436.
[15] 江海涛, 唐荻, 米振莉. 汽车用先进高强度钢的开发及应用进展[J]. 钢铁研究学报, 2007, 19(8): 1-6.
[16] Silva, F., Lopes, N.I.A. and Santos, D.B. (2006) Microstructural Characterization of the C-Mn Multiphase High Strength Cold Rolled Steel. Materials Characterization, 56, 3-9.
[17] Kong, J.P., Han, T.K., Chin, K.G., et al. (2014) Effect of Boron Content and Welding Current on the Mechanical Properties of Electrical Resistance Spot Welds in Complex-Phase Steels. Materials and Design, 54, 598-609.
[18] 刘向海, 刘薇, 刘嘉斌, 等. 孪生诱发塑性(TWIP)钢的研究现状[J]. 材料导报, 2010, 24(6): 102-106.
[19] 房秀慧, 杨平, 鲁法云, 等. 高锰TWIP钢拉伸时织构演变和孪生弱化织构的作用[J]. 武汉科技大学学报, 2011, 34(6): 424-431.
[20] 严玲, 刘仁东, 严平沅, 等. 汽车用轻质TWIP钢的组织演变规律研究[J]. 鞍钢技术, 2010, 361(1): 30-35.
[21] Speer, J.G., Edmonds, D.V. and Rizzo, F.C. (2004) Partitioning of Carbon from Supersaturated Plates of Ferrite with Application to Steel Processing and Fundamentals of the Bainite Transformation. Current Opinion in Solid State & Materials Science, 8, 219-237.
[22] Speer, J.G., Rizzo, F.C., Matlock, D.K., et al. (2005) The “Quenching and Partitioning” Process: Background and Recent Progress. Materials Research, 8, 417-423.
[23] 赵才, 江海涛, 唐荻, 等. Q&P钢塑性变形机制及组织-性能研究[J]. 材料工程, 2009(2): 19-23.
[24] Sun, J. and Yu, H. (2013) Microstructure Development and Mechanical Properties of Quenching and Par-titioning (Q&P) Steel and an Incorporation of Hot-Dipping Galvanization during Q&P Process. Materials Science & Engineering A, 586,100-107.