金属泡沫–水的自然对流换热实验研究
Experimental Investigation of Natural Convection in Metal Foam-Water
DOI: 10.12677/APF.2016.61001, PDF, HTML, XML, 下载: 2,205  浏览: 5,862  国家自然科学基金支持
作者: 彭 招, 潘 阳, 钱维扬:华东交通大学土木建筑学院,江西 南昌
关键词: 金属泡沫–水自然对流温差孔密度Metal Foam-Water Natural Convection Difference of Temperature Pore Density
摘要: 本文针对多孔介质材料中的自然对流换热问题,通过搭建充满金属泡沫–水的实验装置,探究了金属泡沫–水自然对流换热机理,讨论了加热功率、箱体倾斜角度对方腔内金属泡沫-水两相自然对流换热的影响,实验发现努谢尔数Nu随加热功率的增加而变大,随着倾斜角度的增大而变小,随着金属泡沫孔密度PPI的增大而减小。最终得到了箱体水平放置时5 PPI和10 PPI努谢尔数Nu随瑞利数Ra的变化规律。
Abstract: In this paper, an experiment apparatus filled with metal foam-water is set up to investigate the problem of natural convection about porous medium. A mechanism of natural convection of metal foam-water is investigated by experiments. Influences of heating power and angle of inclination on natural convection in the cavity filled with metal foam-water are discussed. It is found that the Nusselt number increases with heating power and decreases with the angle of inclination and pore density PPI of metal foam. A correlation of Nusselt number and Raleigh number is obtained when the cavity is horizontal with 5 PPI and 10 PPI.
文章引用:彭招, 潘阳, 钱维扬. 金属泡沫–水的自然对流换热实验研究[J]. 渗流力学进展, 2016, 6(1): 1-8. http://dx.doi.org/10.12677/APF.2016.61001

参考文献

[1] Dyga, R. and Witczak, S. (2012) Investigation of Effective Thermal Conductivity Aluminum Foams. Procedia Engi-neering, 42, 1088-1099.
http://dx.doi.org/10.1016/j.proeng.2012.07.500
[2] Zhao, C.Y., Lu, T.J., Hodson, H.P., et al. (2004) The Temperature Dependence of Effective Thermal Conductivity of Open-Celled Steel Alloy Foams.Materials Science and Engineering, 367, 123-131.
http://dx.doi.org/10.1016/j.msea.2003.10.241
[3] Zhao, C.Y., Lu, T.J. and Hodson, H.P. (2005) Natural Convec-tion in Metal Foams with Open Cells. International Journal of Heat and Mass Transfer, 48, 2452-2463.
[4] Kathare, V., Davidson, J.H., et al. (2008) Natural Convection in Water-Saturated Metal Foam. International Journal of Heat and Mass Transfer, 51, 3794-3802.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.11.051
[5] Kathare, V., Davidson, J.H., et al. (2010) Buoyant Convection in Superposed Metal Foam and Water Layers. Journal of Heat Transfer, 132, 014503-1-014503-4.
http://dx.doi.org/10.1115/1.3194767
[6] Nihad, D., et al. (2006) Heat Transfer Analysis in Metal Foams with Low-Conductivity Fluids. Journal of Heat Transfer, 128, 784-792.
http://dx.doi.org/10.1115/1.2217750
[7] Nihad, D., et al. (2007) Heat Transfer Measurements in Metal Foam Subjected to Constant Heat Flux. Experimental Thermal and Fluid Science, 32, 624-631.
http://dx.doi.org/10.1016/j.expthermflusci.2007.08.004
[8] Indranil, G. (2008) Heat-Transfer Analysis of High Porosity Open-Cell Metal Foam. Journalof Heat Transfer, 130, 034501-1-034501-4.
[9] Indrani, G. (2009) Heat Transfer Correlation for High-Porosity Open-Cell Metal Foam. International Journal of Heat and Mass Transfer, 52, 1488-1494.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.07.047
[10] 屈治国, 徐治国, 陶文铨, 等. 通孔金属泡沫中的空气自然对流传热实验研究[J]. 西安交通大学学报, 2009, 43(1): 1-4.
[11] Yang, K. and Kambiz, V. (2010) Analysis of Temperature Gradient Bifurcation in Porous Media—An Exact Solution. International Journal of Heat and Mass Transfer, 53, 4316-4325.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.05.060
[12] Yang, K. and Kambiz, V. (2011) Analysis of Heat Flux Bifurcation inside Porous Media Incorporating Inertial and Disperion—An Exact Solution. International Journal of Heat and Mass Transfer, 54, 5286-5297.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.08.014
[13] Yang, K. and Kambiz, V. (2011) Transient Aspects of Heat Flux Bifurcation in Porous Media—An Exact Solution. Journal of Heat Transfer, 133, 052602-1-052602-12.
[14] 汪天送, 屈治国, 陶文铨, 等. 烧结金属纤维板大空间自然对流实验研究[J]. 工程热物理学报, 2011, 32(4): 663- 666.